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Abstract

We analyze the optimal intervention policy for an emerging market central bank

that wishes to stabilize the exchange rate during a capital outflow episode, but pos-

sesses limited reserves. Using a linear-quadratic framework, we show that the zero

lower bound on reserves generates a time inconsistency problem. A central bank with

full commitment achieves a gradual depreciation to the pure-float level by promising

sustained future intervention, such that reserves are exhausted after particularly ad-

verse shocks. A central bank without commitment intervenes little, wishing to preserve

some reserves forever, and suffers a larger immediate exchange rate depreciation and

associated welfare cost. For more persistent shocks, the time inconsistency problem is

greater, and simple intervention rules can achieve welfare gains relative to discretion.

JEL classification: E44, F31, F32
Keywords: Foreign exchange intervention, capital outflows, time consistency

∗Contacts: Suman Basu, sbasu2@imf.org; Pablo Winant, pablo.winant@bankofengland.co.uk.
For insightful comments, we thank our referees as well as Olivier Blanchard, Marcos Chamon,
Anton Korinek, Jun Kim, Matteo Maggiori, and seminar participants at the Graduate Institute in
Geneva, Deutsches Institut für Wirtschaftsforschung in Berlin, University of Surrey, University of
Bath, Computational Economics and Finance 2016, Society for Economic Dynamics 2016, European
Economic Association 2016, and the IMF Annual Research Conference 2016. All errors remaining
are our own. The views expressed in this document are those of the authors and do not necessarily
represent those of the IMF, its Executive Board or Management, or those of the Bank of England.

1



1. Introduction

How should central banks in emerging market economies (EMEs) intervene in the foreign

exchange (FX) market when faced with capital outflows? As capital flows to EMEs have

begun to retrench and reverse after the post-crisis inflow surge, and as new risks to the global

economy have surfaced, many countries are grappling with this question.

The principle that EME central banks may have reason to undertake sterilized FX in-

tervention in response to inflow shocks has become increasingly accepted. There is growing

recognition that owing to financial market imperfections, exchange rates may become dis-

connected from traditional macroeconomic fundamentals and instead turn into a source of

shocks (e.g., Jeanne and Rose, 2002; Gabaix and Maggiori, 2015). Moreover, several papers

have found that sterilized intervention has had traction on the exchange rate in EMEs, at

least under some circumstances (e.g., Blanchard, Adler and Filho, 2015; Chamon, Garcia

and Souza, 2015). As a result, some policymakers and academics have endorsed the use

of FX intervention alongside monetary policy in the face of capital inflows (in particular,

see Ghosh, Ostry, and Chamon, 2016, and Blanchard, Ostry, Ghosh, and Chamon, 2015).

Such research has provided intellectual backing for the growing popularity among EMEs of

managed float regimes, as documented by Ghosh, Ostry, and Qureshi (2015).

However, the optimal FX intervention policy for a managed float regime facing outflow

shocks is not well understood. Inflow and outflow shocks are conceptually different, because

the latter may result in the central bank depleting its entire stock of reserves, leaving it

no scope to intervene further. In addition, the persistence of the shock may be different

according to the direction of capital flows. In the absence of a clear policy framework

taking these considerations into account, the conventional wisdom has been that the central

bank should refrain from intervening in the face of outflows except to counter severe market

dysfunction. Indeed, in cases where the central bank has intervened to counteract capital

outflows, but has ultimately allowed the exchange rate to be devalued or to depreciate, it is

common for the financial press to talk of reserves being “wasted.”1

In practice, EME central banks with managed floats have behaved in a heterogeneous

manner when faced with capital outflows. To gain some appreciation of the judgments and

trade-offs that central banks need to make, we highlight in this paper some notable cases of

EME outflow episodes where sterilized FX intervention was used.2 Several salient features

stand out. First, central banks in managed float regimes typically find significant value in

1Wildau and Mitchell (2016) document that “Critics say PBoC [People’s Bank of China] spending on
intervention has been a waste because it has only delayed further weakness in the renminbi.” Subramanian
(2013), when assessing the effectiveness of India’s FX intervention during the taper tantrum, states by way
of background his opinion that “international experience suggests that sterilized intervention to defend a
currency, especially during crises, tends to be ineffective or counterproductive.”

2The specific outflow episodes we highlight are: Russia 2008Q2, Korea 2008Q2, Brazil 2013Q1, India
2013Q2, Russia 2013Q4, and China 2014Q1. See Section 2 for more details.
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delaying the depreciation of the exchange rate to the pure-float level—for example, such a

delay may help cushion the domestic economy by providing time for private sector agents

to unwind their FX positions. Second, central banks behave differently depending on how

large their initial reserve stock is relative to the shock, and on the probability of the shock

continuing for many periods.

In this paper, we characterize the optimal FX intervention policy in response to capital

outflows in a managed float regime. We take explicit account of the zero lower bound

(ZLB) on reserves, which is a distinguishing feature of the outflows case. We also show

how the optimal policy depends on the nature of the shock. To preserve the tractability

necessary to solve the model under different degrees of commitment, we explore these issues

by building on a stylized theoretical framework: a linear-quadratic model where the central

bank has an exchange rate target subject to an exchange rate equation. The objective

function includes a discount factor that reflects the desire to delay depreciation, while the

form of the exchange rate equation captures various forms of limited capital mobility.3 We

abstract from alternative policy tools such as interest rates in order to focus on the FX

intervention policies; we thus consider sterilized intervention, which is how central banks

typically intervene in the FX market.4

We derive three key insights, which we believe to be qualitatively robust across a range

of models that combine the ZLB on reserves with imperfect arbitrage on the FX market.

Our first insight is that at the start of an outflow episode, a central bank with full

commitment and limited reserves optimally promises to intervene in the future, and may

not intervene at all today. The exchange rate is a forward-looking asset price: therefore, any

promised FX intervention causes the exchange rate to appreciate both in the period of the

intervention and also in all previous periods through changes to investors’ expectations. The

further in the future the intervention is promised, the larger the number of periods prior to

intervention in which the “expectations channel” can be exploited to stabilize exchange rates,

implying a larger “bang per buck” from the use of the central bank’s scarce reserves. At the

same time, intervention too far in the future is not desirable because of the discounting of

future welfare gains. The trade-off between the expectations channel and discounting yields

the set of future dates at which FX intervention is optimally promised.

The optimal full-commitment policy is for the central bank to promise a path of sustained

intervention in the future, which is aggressive enough that the entire reserves stock eventually

becomes depleted if the shock persists. This policy achieves a gradual depreciation to the

pure-float level during the outflow episode. Notice that unlike the bipolar regimes of free

3Limited capital mobility encompasses imperfect asset substitutability (e.g., Kouri, 1976, and Blanchard,
Giavazzi, and Sa, 2005) and imperfect arbitrage owing to balance sheet constraints on international financial
intermediaries (e.g., Gabaix and Maggiori, 2015).

4We do not consider capital outflow controls, which may both reduce the effective magnitude of outflow
shocks and worsen the financial intermediaries’ ability to arbitrage returns. The first effect reduces the need
for intervention to defend the exchange rate, while the second effect strengthens the traction of intervention.
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floats and hard pegs, FX intervention and depreciation are jointly optimal under a managed

float, even if reserves eventually run out.

Our second insight is that because of limited reserves, the full-commitment solution is

not time consistent. We therefore solve for the time-consistent solution, in which the central

bank re-optimizes at every date, ignoring past promises.5 FX intervention turns out to be

low, because the central bank recognizes that in the absence of credible promises, a high

level of reserves remaining in the vault today is necessary to bolster investors’ expectations

regarding intervention by “future” central banks, which in turn helps to stabilize the current

exchange rate through the “expectations channel.” As a result of intervention being low in

every period, reserves never run out. Relative to the full-commitment solution, the time-

consistent solution involves a larger exchange rate depreciation as soon as the outflow episode

begins, with a correspondingly higher welfare cost.

Simple intervention rules, such as a temporary peg or a rule to offset a fraction of the

outflow shock, improve welfare above the time-consistent level by avoiding the large im-

mediate depreciation. A central bank with partial commitment power—i.e., one that can

commit to simple rules but not to the possibly complicated full-commitment intervention

policy—should announce its commitment to such rules at the start of an outflow episode.

Our third insight is that the optimal policy is affected by the persistence of the shock.

The more persistent the shock is expected to be, the more delayed is the timing of the

full-commitment FX intervention, and the lower is the level of the time-consistent FX inter-

vention.6 The time consistency problem is more severe for persistent shocks: the longer the

outflow episode is expected to last, the more important are investors’ expectations of future

interventions for determining the exchange rate today, and so the more costly in welfare

terms is the absence of credible promises to intervene in the future. Therefore, a simple FX

intervention rule is more likely to achieve welfare gains above the time-consistent solution

when the shock is persistent than when it is temporary.

A roadmap of our paper is as follows. For the remainder of the introduction, we provide a

summary of the related literature. Section 2 highlights some cases where EME central banks

have intervened in response to outflow shocks. Section 3 presents our baseline model. Section

4 solves the model for the deterministic case, with subsections on full commitment, time

consistency, and simple rules. Section 5 solves the model for the stochastic case, highlighting

the role of shock persistence. Section 6 concludes.

5The time-consistent solution must be solved using numerical fixed-point methods. The stylized nature
of our model makes the problem tractable enough to solve under a variety of parameter choices.

6There is a time consistency problem as long as there is a non-zero probability of reserves being exhausted
in the full-commitment solution.
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Related Literature. Our exchange rate equation assumes the existence of imperfections

in the FX market that give rise to two properties: first, finite capital flows in every period

even if expected returns are not equalized across bonds denominated in different currencies;

and second, a role for sterilized FX intervention. On the first property, the early portfolio

balance literature, initiated by Kouri (1976, 1983), established that imperfect substitutability

between domestic and foreign assets can indeed generate capital flows that are always finite

in size, which in turn means that the uncovered interest parity (UIP) condition central

to Dornbusch (1976) is generally broken. Kouri’s work immediately inspired an array of

portfolio demand models, for different country configurations and with varied emphases on

valuation effects.7 More recently, Obstfeld (2004) calls for renewed attention to international

portfolio positions, and Blanchard, Giavazzi and Sa (2005) build a theoretical model designed

to capture valuation effects on gross asset positions.

On the second property, Backus and Kehoe (1989) establish that sterilized FX inter-

vention has no effect in a model with micro-founded welfare and free trade in bonds of

different currencies (a weak arbitrage condition). Gabaix and Maggiori (2015) restore a role

for intervention by combining the portfolio balance literature with a financial friction that

limits the ability of international financial intermediaries to arbitrage excess returns in the

FX market. With such a friction, changes in the currency composition of assets cannot be

instantaneously undone by participants on FX markets, and instead the attempts by these

actors to undo the changes generate real effects. This central role for imperfect arbitrage

builds on the literature on the segmentation of asset markets owing to financial frictions.8

The growing emphasis on frictions in the asset market in exchange rate models9 naturally

leads to the result that the exchange rate can be driven by shocks to financial intermediaries

themselves, as argued by Jeanne and Rose (2002) and Bruno and Shin (2014).10 As Kouri

(1976) had earlier conjectured: “The view of the exchange rate as a relative asset price

suggests that ... there is no reason to expect the exchange rate to be stable. In fact, the

behavior of the exchange rate is likely to resemble the behavior of asset prices in other

speculative markets, such as the stock market.” The associated idea that the exchange rate

7See, among others, Calvo and Rodriguez (1977), Kouri and de Macedo (1978), Tobin and de Macedo
(1979), Dornbusch and Fischer (1980), and Henderson and Rogoff (1982). Driskill and McCafferty (1980)
assume a portfolio demand specification similar to ours. Branson and Henderson (1985) provide an overview
of this literature.

8Models of asset market segmentation include Bacchetta and Van Wincoop (2010), Alvarez, Atkeson,
and Kehoe (2002, 2009), and Maggiori (2016).

9Backus and Smith (1993) document the consumption-real exchange rate anomaly: unlike what a model
without financial imperfections would predict, there is little relation between relative consumption and real
exchange rates in the data. Chari, Kehoe, and McGrattan (2002), Hau and Rey (2006), Corsetti, Dedola, and
Leduc (2008) and Pavlova and Rigobon (2012) add financial market imperfections and market incompleteness
to better explain the stochastic properties of observed exchange rates.

10Jeanne and Rose (2002) show that the existence of noise traders can cause exchange rates to be volatile
even when fundamentals are unchanged. Bruno and Shin (2014) argue that the leverage cycle of global banks
is the main determinant of global liquidity conditions and cross-border capital flows.
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may become disconnected from macroeconomic fundamentals, and may instead transmit

financial shocks to the macroeconomy, rationalizes an exchange rate stabilization motive for

EME central banks.11 We capture this motive in our model’s objective function.

Several recent papers have considered optimal FX intervention policy in models where the

free float of the exchange rate may be undesirable. Ghosh, Ostry, and Chamon (2016) solve

for optimal FX intervention and monetary policies in a reduced-form model, while Devereux

and Yetman (2014) and Benes, Berg, Portillo, and Vavra (2015) work within a simple New

Keynesian framework. Recent fully micro-founded approaches to optimal policy, based on

the financial imperfections in Gabaix and Maggiori (2015), include Cavallino (2015) and

Fanelli and Straub (2016). Relative to this literature, our paper sticks to a reduced-form

framework in order to be able to tractably characterize and solve what is, to our knowledge,

a novel time consistency problem arising from the ZLB on reserves.

Finally, a growing empirical literature appears to support our model’s assumption that

sterilized FX interventions have some traction on exchange rates in EMEs.12 Papers that

summarize country case studies include Disyatat and Galati (2005), who cover an array of

different economies, and Chamon, Garcia and Souza (2015), who focus on the recent use of

an FX intervention rule by Brazil. Empirical support for the effectiveness of intervention

has also been provided by cross-country panel analyses, including Adler and Tovar (2011),

Adler, Lisack, and Mano (2015), and Blanchard, Adler and Filho (2015).

2. Heterogeneous Responses to Outflow Shocks

Several EME central banks have undertaken sterilized FX intervention to support their

currencies in response to capital outflows and/or a sudden decline in inflows. Here we

describe some recent cases of outflow episodes. We observe that central bank behavior is

highly heterogeneous across episodes, and we use a narrative approach to briefly outline the

judgments and trade-offs that central banks need to make. We attempt later to capture

these judgments and trade-offs using our simple model.

The following six capital outflow episodes help illustrate the policies deployed by central

bank EMEs:

I. Russia 2008Q3. The Central Bank of Russia (CBR) started with a large level of

reserves (USD 556bn, or 119 percent of GDP). Faced with a large temporary shock, as

the global financial crisis caused a collapse in oil prices and export revenues, the CBR

heavily intervened in order to “slow the pace of the rouble’s depreciation” and thereby

11Such financial shocks may be especially disruptive when domestic agents borrow in foreign currency
(Krugman, 1999; Aghion, Bacchetta, and Banerjee, 2001; Mendoza, 2002).

12Sarno and Taylor (2001) provide an early survey of the literature. A more recent review of empirical
studies is provided in table 1 of Ghosh, Ostry, and Chamon (2016).
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mitigate the “heavy strain on the balance sheets of banks, firms and households via the

significant level of foreign-currency-denominated debt that these agents had taken on”

(CBR-authored section in BIS, 2013). Reserves fell by USD 187bn over three quarters,

while the exchange rate depreciated by 31 percent. Conscious of the possibility that

a contraction in banks’ external borrowing might cause further depreciation, the CBR

also mitigated outflows by offering unsecured lending to banks.

II. Korea 2008Q3. The Bank of Korea (BOK) also started with a large level of reserves

(USD 258bn, or 95 percent of GDP) and intervened heavily during the global financial

crisis in order to achieve its twin goals: to “contain excessive exchange rate volatility”

and to “alleviate the FX funding shortages of banks” (BOK-authored section in BIS,

2013).13 The BOK also provided liquidity directly to banks with FX borrowing. Re-

serves fell by USD 57bn before recovering, while the exchange rate depreciated by 24

percent.

III. Brazil 2013Q2. The Brazilian Central Bank (BCB) faced a moderate decline in

inflows rather than an outright outflow in 2013, which started at the beginning of the

year and was exacerbated by the “taper tantrum” in May. The BCB started with

reserves of USD 374bn, or 60 percent of GDP. Following a period of discretionary FX

intervention, the BCB decided to announce an intervention rule of daily sales of USD

500m in currency forwards, insuring investors against a domestic currency depreciation,

which was reduced in size at the end of the year.14 Reserves fell by USD 18bn and the

exchange rate depreciated by 14 percent.

IV. India 2013Q3. India suffered from a reversal in capital flows during the time of

the “taper tantrum,” which turned out to be moderate and short-lived, but which

was seen by some at the time as a harbinger of future trends as advanced economies

began to normalize monetary policies. The Reserve Bank of India’s (RBI) moderate

reserves were large relative to the immediate shock (USD 264bn, or 58 percent of

GDP), although not to a sustained continuation of outflows. The RBI intervened by

lending in USD to state-owned oil companies (Subramanian, 2013), and later allowing

FX losses by the companies to be repaid in rupees instead of USD (Indian Express,

2014). The intervention was small, and reserves fell by just USD 5bn; the exchange

rate depreciated by 5 percent.

13Despite Korea’s current account surpluses, Korean banks have significant FX borrowing because they
are intermediaries for the FX hedging motives of the Korean private sector. For more details, see BIS (2013).

14Using a variety of approaches, Chamon, Garcia and Souza (2015) argue that the announcement of the
new intervention rule was effective in mitigating the depreciation of the Brazilian real.
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Figure 1. Selected Capital Outflow Episodes in EMEs
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Figure 1 (Continued)
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V. Russia 2014Q1 and Q4. Russia was hit by a sequence of two outflow shocks in

2014, the first as a result of the beginning of the military intervention in Ukraine,

and the second later in the year owing to Western sanctions and the collapse in oil

prices. Relative to the 2008 crisis, the CBR started with a lower level of reserves (USD

471bn, or 78 percent of GDP), and the shock was smaller (albeit still large) and more

permanent. Reserves fell by USD 160bn over five quarters (so intervention was smaller

but more sustained than in the 2008 crisis), while the exchange rate depreciated by

44 percent over five quarters and continued depreciating after the intervention had

been stopped. The CBR also provided capital support to banks to ease their FX

deleveraging process (IMF, 2015).

VI. China 2014Q2. The People’s Bank of China (PBC) started with the largest level

of reserves of all the EME examples considered here (USD 3.97tn, or 174 percent of

GDP). Capital outflows picked up as the Chinese economy weakened in 2014, and

then worsened in mid-2015. The persistence of the shock remained unclear. During

this period, China was moving to a managed float regime from a peg. The PBC used

its warchest of reserves to keep the exchange rate almost unchanged for five quarters

before allowing some depreciation. While some observers deemed reserves to have

been “wasted” because the exchange rate eventually moved, at least one PBC official

was reportedly cautiously pleased that some of the depreciation pressures had been

contained, because a sharp depreciation carried the risk of generating a larger panic:

“once confidence is lost, it can’t easily be restored” (Wildau and Mitchell, 2016).15

These case studies underline that the responses of EME central banks to outflow shocks

are very heterogeneous, with a multitude of factors affecting their decisions. In this paper, we

will focus our analysis on a couple of themes that appear to be common across the outflow

episodes. First, in some episodes, central banks do view an immediate depreciation as

hurting domestic welfare—e.g., by generating excessively rapid deleveraging of FX positions

by domestic agents—and in response, they choose to intervene and delay the depreciation.

In section 3, we turn to building a simple model capturing in reduced form the incentive to

delay depreciation. Second, it appears that central bank behavior is connected both to the

level of reserves relative to the shock’s magnitude (which we explore in section 4) and to the

assessed persistence of the shock (which we explore in section 5).

15Wildau and Mitchell (2016) document the official’s comments as follows: “The cost of intervention in
terms of reserves has been high but this policy can’t be evaluated just in terms of numbers. Once confidence
is lost, it can’t easily be restored. Then a lot of bad things can happen.”
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3. Stylized Model

We consider a capital outflows episode where financial shocks are generating volatility in

the exchange rate independently of shifts in underlying macroeconomic fundamentals, and

the EME central bank is attempting to manage the exchange rate in order to limit the

transmission of these shocks to the wider economy. However, it possesses limited reserves

with which to accomplish this objective.

Our baseline framework comprises a linear-quadratic optimization problem amended with

a zero lower bound (ZLB) constraint on reserves. The simplicity of the model yields two

advantages. First, it helps clarify the exposition regarding the motive to postpone interven-

tion in the full-commitment solution. Second, it keeps the model tractable enough for the

time-consistent solution to be numerically solvable.

The central bank’s objective is to minimize a quadratic loss function:

W (R0) = −E0

[
∞∑
t=0

βt
(et − e∗)2

2

]
. (1)

where the outflow episode begins at t = 0 and potentially continues into the indefinite future,

β ∈ (0, 1) is the central bank’s discount factor, et is the exchange rate in period t (defined

so that an increase means a depreciation), and e∗ is the exchange rate target relevant for

the episode.16 This welfare function captures the notion described in the literature review

that financially-driven exchange rate deviations can be destabilizing to the macroeconomy,

particularly when domestic agents are leveraged in foreign currency; and as a result, the

central bank may wish to delay any depreciation.17

The feasible set is described by a stylized equilibrium model of exchange rate determina-

tion. The capital flow equation is as follows:

kt = a (Etet+1 − et) + zt, (2)

where kt represents capital outflows, zt denotes a capital outflow shock, and Etet+1 is the

expected exchange rate for the next period t + 1. We assume that the domestic and for-

16Since our model is intended for managed float regimes, e∗ does not represent a strict peg: there is no
obligation that the exchange rate be maintained at that level as long as possible.

17In a standard New Keynesian (NK) model with imperfect financial markets, monopolistic competition,
and home bias, a squared quadratic term for the exchange rate around its steady state level will naturally
be a part of the central bank’s objective function after portfolio balance shocks, when the policy rate is not
included as an instrument in the policymaker’s toolkit (see, for example, Cavallino, 2015). More broadly,
our objective function is intended to also capture in reduced form a range of costs stemming from balance
sheet effects (e.g., Krugman, 1999; Aghion, Bacchetta, and Banerjee, 2001; Mendoza, 2002) that have not
yet been fully captured in standard NK treatments, but which are a key worry for EME policymakers. For
example, by limiting and delaying the depreciation of the currency, the central bank can allow unhedged
borrowers (e.g., households, firms and financial institutions) more time to reduce their FX exposure.
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eign interest rates are identical or that the wedge between them is constant (and therefore

absorbed into the shock zt), so that the policy rate is not a separate item in the toolkit.18

Our specification is conceptually related to the framework in Gabaix and Maggiori (2015).

The shock zt captures in reduced form portfolio balance shocks to international financial

intermediaries which move the exchange rate but are unrelated to traditional macroeconomic

fundamentals.19 A finite value for a in our model reflects a limit to arbitrage by the private

sector, which means that FX intervention can have traction on the exchange rate; as a→∞,

we obtain instead the standard perfect-arbitrage uncovered interest parity (UIP) condition.20

We assume a simple linear formulation for the current account surplus xt, which is nor-

malized so that the current account is in balance when et = 0:

xt = cet. (3)

The central bank’s policy variable is the level of sterilized FX intervention ft:

ft ≡ Rt −Rt+1 ∈ [0, Rt] , (4)

where Rt is the stock of reserves at the beginning of period t and is determined by the

intervention policies up to time t− 1, and R0 is the exogenous initial level of reserves. The

upper bound on ft represents the zero lower bound on reserves, which is the source of the new

insights in this paper. Since we are focused on an outflow episode, we additionally impose

for analytical convenience that ft is weakly greater than zero, i.e., reserve accumulation is

not possible. Our key insights are robust to the relaxation of this second constraint. Finally,

the balance of payments identity is as follows:

kt ≡ xt + ft. (5)

The exchange rate equation is derived by combining equations (2), (3), and (5):

et =
1

a+ c
(zt − ft + aEtet+1) . (6)

18Ghosh, Ostry and Chamon (2016) show in a model without a lower bound on reserves that if the policy
rate is available, it should be used alongside FX intervention so as to stabilize the exchange rate (i.e., higher
interest rate after outflow shocks). We abstract from such considerations in this paper and focus instead on
the simplest model with a zero lower bound on reserves.

19This feature is also characteristic of the broader portfolio balance literature (e.g., Kouri, 1976; Blan-
chard, Giavazzi, and Sa, 2005).

20In Gabaix and Maggiori (2015), there is a limit to the arbitrage between domestic and foreign assets
because the financial intermediaries who must conduct such arbitrage face constraints on the size of their
balance sheets. Our parameter a can be loosely compared with their variable 1

Γ , where Γ is related to the
portion of shareholders’ funds that financial intermediaries are able to steal, and therefore measures the
strength of financial frictions for investors. Under this interpretation, as a → ∞, Γ → 0 and financial
frictions disappear, so perfect arbitrage becomes possible.
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Iterating this equation forward:

et =
1

a+ c
Et

∞∑
i=0

(
a

a+ c

)i
[zt+i − ft+i] . (7)

Therefore, in our model, FX intervention appreciates the exchange rate, which is consistent

with the empirical evidence for EMEs and the theoretical findings of recent micro-founded

models (e.g., Gabaix and Maggiori, 2015; Cavallino, 2015; Fanelli and Straub, 2016). Our

model includes an “expectations channel”: FX intervention to support the exchange rate in

future periods supports the exchange rate today as well. One unit of FX intervention today

appreciates the exchange rate by 1
a+c

today, while one unit of FX intervention tomorrow

appreciates the exchange rate today by the lower amount a
(a+c)2

.

Equations (4) and (6), together with the value of R0, summarize the central bank’s

constraints. We denote the pure-float exchange rates {et}∞t=0 as the exchange rate path in

the absence of intervention, i.e., ft = 0 for all t. The central bank’s problem is interesting

when the shock zt causes et to deviate from e∗ in at least some periods.

In this paper, we focus on an outflow shock that begins at z0 = z > 0, and then in

each period has a probability p of persisting at the same level into the next period, and a

probability 1− p of falling to zero (the absorbing state) and remaining there forever.21 The

Markov transition matrix is:

zt+1 = 0 zt+1 = z

zt = 0

zt = z

[
1 0

1− p p

]
(8)

We first solve in section 4 the special case of constant outflows given by p = 1, because

it is easy to understand and clearly demonstrates most of our key insights. However, the

pure-float exchange rate and the target remain permanently apart in this case. In section 5,

we solve the general stochastic case p ∈ (0, 1). This specification allows us to examine the

effect of the shock persistence p on the optimal policy, and it also ensures that in the long

run, the pure-float exchange rate always reverts to the target e∗, so the central bank is not

forever trying to keep the exchange rate away from its pure-float level.

Clearly, the precise form of our optimal solutions for intervention and the exchange rate

path will depend on the assumed functional forms for welfare and the exchange rate equation.

Nevertheless, the qualitative effect of the ZLB on the time consistency of the solution, and on

the comparative levels of FX intervention and welfare across different degrees of central bank

commitment, should apply across a wide range of models, as long as a policy of stabilizing

21When p ∈ (0, 1), this simple shock specification captures one key feature that is operational over a
variety of more general stochastic processes: the central bank knows that it faces an outflow shock today,
but it is uncertain whether or not it will face outflow shocks in the future.
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the exchange rate at e∗ forever causes reserves to become exhausted with probability greater

than zero. This condition is satisfied provided that p > 0.

4. Optimal Intervention with the ZLB

In this section, we characterize the optimal FX intervention policy for the constant outflows

case: p = 1, which implies that zt = z > 0 for all t.

We prove that the ZLB on reserves, combined with imperfect capital mobility, generates a

time consistency problem. In practical terms, the implications are as follows. For very large

levels of reserves, the optimal intervention policy does not depend much on the degree of

commitment of the central bank, and involves fully offsetting the outflow shock and keeping

the exchange rate at e∗. For low-to-moderate levels of reserves, however, the optimal inter-

vention policy does depend on commitment power. If the central bank has full commitment,

it achieves a gradual depreciation to the pure-float level by promising at the beginning of the

outflow episode to intervene agressively, but at later dates rather than immediately. In the

absence of commitment power, the central bank undertakes only a small level of interven-

tion in all periods, and lets the exchange rate depreciate. A central bank with intermediate

commitment power finds it optimal to announce a simple intervention rule. Finally, in the

limiting case where the central bank starts with no reserves, intervention becomes trivially

identical at zero for all degrees of commitment power.

4.1. Full-commitment solution

Definition 1 (Full-commitment optimization problem) The central bank chooses in

period t = 0 a sequence of FX interventions {ft}∞t=0 to maximize the expression (1) subject

to the constraints (4) and (6) and given the value of R0.

A central bank with full commitment optimally combines intervention with market com-

munication. It is able to credibly commit at the start of the outflow episode, t = 0, to the

entire future FX intervention path {ft}∞t=0, provided that the path is feasible, i.e., it satisfies

equation (4) given the value of R0. These promises regarding future FX interventions are

correctly regarded as unbreakable by foreign investors, and pin down the path of exchange

rates {et}∞t=0 via equation (6).

Of course, full commitment may not be a realistic assumption, but it establishes the

optimal policy benchmark as well as an upper bound for the welfare level. EME central

banks with an extensive history of prior FX interventions and a reputation for fulfilling their

commitments may be able to implement policies close to the full-commitment solution.

By taking the first order condition of the optimization problem with respect to the

exchange rate and backing out the value of the multiplier Γt on the exchange rate equation,
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we can show that the marginal value of intervention in period t on welfare in period 0 is:

Γt =
t∑

u=0

βu
(

a

a+ c

)t−u
(eu − e∗) . (9)

A unit of intervention that is promised for a future period t appreciates exchange rates in

all prior periods u ∈ {0, ..., t} through the “expectations channel.” The effect on the loss

function within each period u is valued according to the marginal utility of the central bank

in those periods, (eu − e∗). The multiplicative factor
(

a
a+c

)t−u
reflects the dampening of the

magnitude of the appreciation as we consider periods further and further before the date of

the intervention. The multiplicative factor βu captures the discounting of welfare gains as

we consider periods further and further after the beginning of the outflow episode. The total

effect of promised intervention in period t on period-0 welfare is the sum of all the weighted

changes in the loss function over the periods from 0 to t.

We normalize e∗ = 0, so in the absence of any outflow shocks, the pure-float exchange

rate is at the target, et = e = 0, and there is no rationale for intervention. When there is a

constant outflow shock zt = z but zero intervention, the pure-float exchange rate is constant

over time at et = e = z
c
> e∗ = 0. FX intervention may be desirable in this case to bring the

exchange rate closer to the target.

Figure 2. Marginal value of intervention in pure-float equilibrium
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Figure 2 shows the constant-outflows case using the baseline parameters e∗ = 0, z = 0.1,

a = 0.8, c = 0.15, and β set such that 1
β

= a+c
c

(we discuss this equality condition in

more detail below). The schedule for Γt, the marginal value of intervention in period t on

welfare in period 0, is hump-shaped. The cumulative effect of the expectations channel

dominates for dates close to the beginning of the outflow episode: Γt increases when the

promised intervention is further in the future, because there is a larger number of periods

prior to intervention during which the expectations channel can operate. Discounting is the

dominant effect for dates of intervention that are far after the beginning of the outflows
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episode, and Γt decreases.22

If the central bank has only a small amount of initial reserves R0, it should promise in

period t = 0 to spend all of it not immediately, but rather in some future period t∗ > 0 when

Γt reaches its peak—in other words, in the period when the central bank will get the highest

“bang per buck” from the use of its scarce reserves. As figure 2 illustrates, the promised

future intervention causes all prior exchange rates to appreciate slightly below the pure-float

level e.

Suppose next that the central bank has non-negligible initial reserves R0. These reserves

are optimally used in periods when the marginal value of intervention is the highest; and

during the periods of intervention, the marginal value of intervention must be equalized.

Therefore, it must be that Γt∈{Intervention dates} = Γ > Γt/∈{Intervention dates} for some constant Γ.

The following Euler condition, equating the discounted marginal utilities across periods, is

derived by combining the first order conditions of the optimization problem with respect to

reserves and the exchange rate, and it holds during the periods of intervention:

et = βet+1. (10)

Given the shape of the Γt function in figure 2, it is apparent that intervention is optimally

promised for some interval of periods around t∗. The next proposition formalizes this result.

Proposition 1 (Full-commitment solution) The optimal FX intervention policy is to

promise positive intervention for a subset of consecutive periods [t1, t2]. There is zero in-

tervention before t1 and reserves are fully depleted in period t2. The exchange rate path

follows:

et =


(

1−
(

a
a+c

)t1−t) ē+
(

a
a+c

)t1−t et1 for t ∈ {0, ..., t1 − 1}
βt2−tet2 for t ∈ {t1, ..., t2 − 1}

ē− 1
a+c

Rt (≥ βē) for t = t2
ē for t ∈ {t2 + 1, ...,∞} ,

(11)

where the formula for et2 has a slight complication because of the discrete time setup. Within

[t1, t2], intervention satisfies:

ft =

{ [
1
β
− a+c

a

]
aet + z for t ∈ {t1, ..., t2 − 1}

Rt for t = t2.
(12)

22The hump-shaped schedule for Γt is not dependent on e∗ being forever away from e. In appendix A.1,
we show a similar graph for the case where e∗ gradually adjusts to e (this case is intended to capture in
reduced form an environment where the long-run desire of the central bank is to adjust the exchange rate
to accommodate the permanent shock, but where adjusting immediately to the pure-float exchange rate
generates short-run costs, e.g., private sector FX borrowers are forced to deleverage too rapidly). In section
5, we show a similar graph for the specification p < 1.

16



which is flat during {t1, ..., t2 − 1} iff 1
β

= a+c
a

, upward-sloping iff 1
β
> a+c

a
, and downward-

sloping iff 1
β
< a+c

a
. t1 and t2 satisfy the feasibility condition

∑t2
t=t1

ft = R0 such that et2 ≥ βē

and Γt∈{t1,...,t2−1} = Γ > Γt/∈{t1,...,t2−1} for some constant Γ.

Proof. Combine the first order conditions of the optimization problem described in definition

1 with equations (4) and (6).

Because of the quadratic loss function, the optimal depreciation of the exchange rate

during {t1, ..., t2} is pinned down solely by the ratio 1
β
. By contrast, the optimal path of the

intervention depends on the solution of a separate sub-problem which compares the pref-

erence parameter 1
β
, capturing the optimal rate of exchange rate depreciation, against a+c

a
,

which captures the rate of depreciation that would be achieved using a constant intervention

path. In the knife-edge case when 1
β

= a+c
a

, these two depreciation rates are identical, so it is

optimal to set the intervention level at the constant value z during {t1, ..., t2}. In the main

text of this paper, we focus solely on the parameter specification described above, which

satisfies this equality condition; appendix A.2 contains some comparative static exercises on

the parameters.

Figure 3. Full-commitment solution
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R0 = 0.5
R0 = 1.0
R0 = 2.0

Figure 3 illustrates the solution for various levels ofR0. For any level of initial reserves, the

exchange rate depreciates above e∗ = 0 as soon as the outflow episode begins in period t = 0.

During the periods {0, ..., t1 − 1}, there is no intervention but nevertheless, the exchange

rate appreciates in anticipation of future intervention. During the periods of intervention

{t1, ..., t2}, the deviation of the exchange rate from its target e∗ grows by a factor of 1
β

in

every period. The central bank is conducting intervention to hold the exchange rate below

ē, but the exchange rate is nevertheless depreciating in anticipation that reserves will run

out. Notice that the marginal value of intervention is equalized during {t1, ..., t2 − 1}. After

reserves are fully depleted in period t2, the exchange rate remains at ē forever.23

23The optimal behavior of the exchange rate poses problems for empirical estimation of the effectiveness of
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The larger is the level of initial reserves R0, the earlier that intervention begins and the

later that reserves run out, so the greater the stabilization of the exchange rate. For initial

reserves R0 sufficiently large, t1 = 0. As R0 →∞, t2 →∞, so the exchange rate is perfectly

stabilized at the target e∗.

Remark 1 (Time consistency) The full-commitment solution is not time consistent.

A full-commitment central bank with low-to-moderate reserves promises at the beginning

of the outflow episode not to intervene today but to do so in the future, because intervention

in the future affects exchange rates over a long time period. If the full commitment as-

sumption were broken and the central bank were allowed to re-optimize tomorrow, it would

again follow the same logic and postpone all intervention to the future. Therefore, the full-

commitment solution is not time consistent. A central bank without full commitment faces

some limits on the promises that it can credibly make regarding future intervention.

4.2. Time-consistent solution

Definition 2 (Time-consistent optimization problem) A time-consistent solution com-

prises an FX intervention policy f (R) and an exchange rate relation e (R) which are infinitely-

differentiable fixed points of the Bellman operator:24

vTC (R) = max
e,R′

{
−(e (R)− e∗)2

2
+ βvTC (R′)

}
(13)

subject to modified versions of equations (4) and (6) and the set of feasible exchange rates:25

f (R) = R−R′ ∈ [0, R] (14)

e (R) =
1

a+ c
(z − f (R) + ae (R′)) (15)

e (R) ≥ ē− 1

a+ c
R. (16)

intervention: although intervention is assumed to have traction in our model, the exchange rate nevertheless
appreciates in the periods of zero intervention and depreciates during the intervention periods. This behavior
is motivated by investors’ expectations regarding future interventions, which is difficult to capture empirically.

24Infinite differentiability is a necessary condition for the policy functions f (R) and e (R) to be defined
over all R (any kinks in the function e (R) will cause problems in applying the generalized Euler condition
that will be derived below).

25Following Kydland and Prescott (1980), the set of feasible exchange rates M (R) is constructed recur-

sively: M (R) =
{
µ : µ = 1

a+c (z − f + aµ′) for some µ′ ∈M (R′) and f = R−R′ ∈ [0, R]
}

.
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When the central bank has no commitment power, the solution must be time consistent,

i.e., it must take into account that the central bank re-optimizes in every period, ignoring

the promises of the past. Therefore, both the optimal policy and investors’ exchange rate

expectations depend not on any explicit promises, but instead on the only state variable

of the problem: the level of reserves at the beginning of each period. The two fixed-point

functions f (R) and e (R) fully characterize the solution.26 In economic terms, instead of

being free to make any promise that satisfies feasibility, the central bank must take as given

the function e (R′) describing investors’ expectations about next period’s exchange rate,

where those investor expectations come from knowing that the central bank will again face

the same Bellman problem at every date in the future.

The time-consistent solution necessarily achieves lower welfare than does the full-commit

-ment solution, because commitment power is valuable in this model. In practice, every

central bank has an intermediate degree of commitment power, lying somewhere between

the two extremes of zero and full commitment.

Again normalizing e∗ = 0, the full-commitment Euler condition (10) is replaced by the

time-consistent Euler condition:

e (R) [1 + aeR (R− f (R))] ≥ βe (R− f (R)) (17)

which holds with equality when reserves are not optimally exhausted in the current period.

To gain intuition for this condition, let us re-write it as follows:

1

a+ c
e (R) ≥ 1

a+ c
βe (R− f (R))− a

a+ c
eR (R− f (R)) e (R) (18)

The left-hand side captures the marginal benefit of spending an extra unit of reserves today:

the effect of intervention on today’s exchange rate, 1
a+c

, multiplied by the marginal reduction

in the loss function today, which turns out to be e (R). The right-hand side has two terms

capturing the marginal benefit of leaving an extra unit of reserves for tomorrow. The first

term assumes that the extra unit is entirely spent tomorrow, and is the effect of intervention

on tomorrow’s exchange rate, 1
a+c

, multiplied by the discounted marginal reduction in the

loss function tomorrow, βe (R− f (R)). The second term draws on equation (15) and is the

effect of having an extra unit of reserves tomorrow on today’s exchange rate: the strength

of the expectations channel, a
a+c

, multiplied by the change in expectations when the level

of reserves left for tomorrow is higher, eR (R− f (R)), multiplied by the marginal reduction

in the loss function today, e (R).27 The solution will involve eR < 0, with higher reserves

26The functions f (R) and e (R) do not vary with time. The level of reserves Rt does change over time,
but we have suppressed the time subscript on reserves for the fixed-point analysis.

27It might appear odd that the first term assumes that the extra reserves are entirely spent tomorrow
while the second term assumes that they are not (as long as eR (R− f (R)) > − 1

a+c ). However, there is no
paradox here: the extra reserves are not entirely spent tomorrow, but from the envelope condition (which
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causing an appreciation in exchange rate expectations.

Our stylized linear-quadratic model with a ZLB on reserves is tractable enough for us to

be able to solve the time-consistent case numerically.28 Figure 4 illustrates our solutions for

f (R) and e (R) for the same baseline parameters as in the previous subsection. The time

consistency problem is related to the level of reserves, which in turn reflects the proximity

of the ZLB constraint on reserves. FX intervention is low near R = 0 and converges to the

outflow-shock level z as R → ∞. The exchange rate is at the pure-float level e at R = 0,

and converges to the exchange rate target e∗ = 0 as R→∞.

Notice that f (R) ∈ (0, R) for all R. In practical terms, positive intervention occurs

in every period regardless of the level of reserves, and importantly, reserves never run out.

In addition, f (R) and e (R) close to R = 0 satisfy the conditions lim
R→0

eR (R) = β−1
a

and

lim
R→0

fR (R) = 1−β
β

c
a
, which can be derived from the Euler condition (17) and exchange rate

equation (15). In other words, when reserves are low, intervention and the exchange rate

depend on discounting and the degree of imperfect arbitrage on FX markets, but not on the

distance between e and e∗.

Figure 4. Time-consistent fixed-point functions
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Figure 5 illustrates the solution for various levels of R0 (some comparative static exercises

on the parameters are presented in appendix A.3). Intervention begins as soon as the outflow

episode begins at t = 0, but is lower than the outflow-shock level z̄ in all periods and

diminishes over time. Crucially, the exchange rate depreciates more in the first period than

it does in the full-commitment case. At low reserve levels, intervention is roughly equal to a

constant fraction of the remaining reserves, so the central bank always retains some reserves

assumes optimization of the path from tomorrow onward), we can treat them as if they are, for the purpose
of calculating the first term.

28Our numerical procedure consists of two steps. Firstly, we construct a guess for the policy functions
f (R) and e (R) which satisfies the feasibility conditions (14) and (16). Secondly, we put this guess for the
shape of the policy functions into a simultaneous equation solver for equations (15) and (17), the latter
equation holding with equality. We use the Levenberg-Marquardt method and cubic splines to interpolate
and calculate the derivatives eR (R).
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in its vaults.

Figure 5. Time-consistent solution
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Combining the analytical and numerical findings above, for a central bank with low-to-

moderate levels of reserves, the intuition for low FX intervention and poor exchange rate

stabilization is as follows.

Just as in the full-commitment case, the central bank knows that it benefits from being

able to make credible promises of future intervention. However, in the time-consistent case,

the central bank is never under any obligation in the future to fulfil any past promises. In

fact, the only way that the central bank can today make a credible “promise” to intervene

in the future is to leave reserves in its vault today, so that in the future the central bank

finds itself with plentiful reserves and optimally wishes to intervene as a result. This logic

explains why investors’ expectations regarding the future exchange rate depend on the level

of reserves left at the end of each period.

Unfortunately for the central bank, this argument applies not only today, encouraging

the central bank to intervene little and to leave reserves for the future, but in every period.

Therefore, even if the central bank leaves all its reserves in its vault today, the expected future

intervention levels are still rather low, as the central bank is expected to keep its vault well-

stocked in future periods too. Therefore, while the “expectations channel” is operational,

it is too weak in the time-consistent case to be the sole stabilization mechanism for the

exchange rate at any date. It is optimally complemented by some up-front intervention

occurring in every period.

The end result is positive but low intervention at all dates. In practice, central banks

with low levels of commitment hesitate to use any of their previously-accumulated reserves.

As a result, the central bank must live with a large immediate exchange rate depreciation

at the beginning of the outflow episode. Therefore, relative to the full-commitment case,

central banks experience a reduction in welfare when they lack the power to commit to

future interventions. In light of this, we turn next to possible remedies.
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4.3. Simple intervention rules

In this section, we consider an EME central bank with a partial degree of commitment power:

it remains unable to commit to the full-commitment FX intervention path, but it does have

the ability to commit to simple intervention rules which are easy to communicate to investors

(one reason why these simple rules may be more credible is that they are more easily verified

by market participants). We show that for some parameter conditions, the central bank can

raise its welfare above the time-consistent level.

We consider two rules to help stabilize the exchange rate around its normalized e∗ = 0 .

The first rule is an exchange rate peg until reserves run out:

et = (1− κ) e, (19)

where κ ∈ [0, 1] represents the position of the peg between the target e∗ and the pure-float

exchange rate e (the higher is κ, the closer is the peg to the target). When reserves are

exhausted, the peg breaks and the exchange rate jumps to e forever. The second rule is a

volume intervention rule until reserves run out:

ft = κz, (20)

where κ ∈ [0, 1] represents the fraction of the outflow shock that is offset by intervention.

Once reserves are exhausted, the exchange rate stays at e forever.

Figure 6. Solutions under full, zero, and partial commitment
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To begin, we focus on the case κ = 1, and using the same baseline parameters as in the

previous subsections, we plot the solutions for full commitment, time consistency, and simple

intervention rules in figure 6. The peg keeps the exchange rate at the target e∗ for some

time by setting intervention to fully offset the outflow shock z, but intervention spikes in

the period before the peg breaks, when investors sell the domestic currency in anticipation

of the break of the peg, following Krugman (1979). This spike in intervention curtails the
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duration of the peg. The volume intervention rule fully offsets the outflow shock z in all

periods, and the exchange rate depreciates smoothly, such that the deviation of the exchange

rate from its target e∗ grows by a factor of a+c
a

in every period. For our baseline parameters,

this rate coincides with the full-commitment rate 1
β
. However, the rule is different from

the full-commitment solution: it directs intervention to begin immediately in period t = 0,

rather than to be postponed in the optimal fashion to future periods.

By definition, both rules achieve lower welfare than does the full-commitment solution.

Relative to the time-consistent solution, both rules increase the FX intervention, and reduce

the depreciation, in the initial period t = 0. The avoidance of a large immediate depreciation

at the beginning of the outflow episode means that welfare may be higher under the rules

than in the time-consistent solution.

Next, in figure 7 we show the welfare levels which are achieved by varying the value of

κ in the intervention rules between 0.5 and 1. Both rules can achieve welfare gains over

the time-consistent case. Therefore, a central bank with partial commitment power should

commit to a simple intervention rule rather than pursuing purely discretionary policies.

Figure 7. Welfare comparison

0.5 0.6 0.7 0.8 0.9 1.0

1.2

1.0

0.8

0.6

0.4

Welfare

Full Commitment
Time Discretion
Volume
Peg
No Intervention

5. The Persistence of the Shock

Next, we turn to the general stochastic case, and we characterize the optimal FX intervention

policy as a function of the shock persistence parameter p ∈ (0, 1). Notice that for this

parameter range, the pure-float exchange rate reverts to the target e∗ at some future date

with probability 1, so the central bank is not forever trying to keep the exchange rate away

from its pure-float level. To simplify the algebra in this section, we consider solutions such

that as soon as the shock ends, intervention goes to zero.

We show that the time consistency problem is more severe for persistent shocks. For very

temporary shocks, the optimal intervention policy does not depend much on the degree of
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commitment of the central bank, and involves fully offsetting the outflow shock and keeping

the exchange rate at e∗. For more persistent shocks, the optimal intervention policy does

depend on commitment power: a central bank with full commitment delays the timing of the

intervention, but a central bank without commitment power diverges from this benchmark

and just reduces the level of intervention in all periods, which results in a large immediate

depreciation. Simple rules are especially welfare-improving following persistent shocks, even

if the magnitude of the outflows within each period is small.

5.1. The incentive to postpone intervention

The full-commitment optimization problem continues to follow definition 1, subject to the

additional constraint that intervention is zero once the shock ends. In the stochastic case, the

central bank credibly commits at the start of the outflow episode to the level of intervention

after every possible sequence of shocks. Such time- and state-contingent commitments place

a higher burden on the central bank’s communication capacity than did the solely time-

contingent commitments in the constant-outflow case.

The marginal value of intervention in period t, in the circumstance that the outflow shock

has continued up to period t, on welfare in period 0 follows the amended formula:

Γzt =
t∑

u=0

(βp)u
(

a

a+ c
p

)t−u (
ezu − e∗

)
(21)

= pt
t∑

u=0

βu
(

a

a+ c

)t−u (
ezu − e∗

)
= ptΓt, (22)

where ezu is the exchange rate in period u subject to the shock having continued up to that

period. Relative to the constant-outflows formula for Γt in equation (9), the expression for Γzt
in equation (21) is modified along two dimensions. First, the effective discount factor βp is

lower in the stochastic case, because the welfare effect of future intervention is only evaluated

along time paths where the shock has continued occurring. Second, the expectations channel
a
a+c

p is also weaker, because future intervention only occurs if the shock continues, so it only

appreciates exchange rates in previous periods to the extent that in those previous periods,

the shock is expected to persist.

Equation (22) establishes that Γzt is identical to the marginal value of intervention in the

constant-outflows case, where the shock definitely continues up to period t, multiplied by

the probability pt that the shock does in fact continue to period t in the stochastic case.29

29Although intervention does not occur once the shock ends, the marginal value of intervention after
the shock has already ended can still be calculated. The marginal value of intervention in period t, in the

circumstance that the outflow shock continued up to period s < t, is given by Γ0,s
t = (1− p)

(
a
a+c

)t−s
Γzs.
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We again normalize e∗ = 0. When the shock is occurring zt = z but there is zero

intervention, the pure-float exchange rate is constant over time at et = ez = z
a(1−p)+c > e∗ =

0. FX intervention may be desirable in this case to bring the exchange rate closer to the

target. Once the shock has ended and there is zero intervention, the exchange rate is forever

at the target: et = e0 = 0.

Figure 8. Marginal value of intervention in pure-float equilibrium, p ≤ 1
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Figure 8 shows the marginal value of intervention using the same baseline parameters as

in figure 2, except that we consider probabilities of persistence p that are smaller than 1.

We set intervention conditional on the shock continuing, f zt , equal to zero, and we plot the

exchange rate conditional on the shock continuing, ezt . Γzt is hump-shaped like Γt was, but

the lower the persistence, the earlier the period t∗p in which Γzt reaches its peak. In other

words, intervention should be promised for earlier periods: since it is more likely that the

shock is still occurring in earlier rather than later periods, these earlier periods are weighted

more in welfare terms, and intervention in earlier periods has a stronger effect on the period-0

exchange rate.

Therefore, for more temporary shocks, there should be less postponement of intervention

in both the full-commitment and time-consistent solutions. We turn to those solutions next.

5.2. Solutions under full, zero, and partial commitment

Figure 9 compares the full-commitment solution, the time-consistent solution, and simple

FX intervention rules in the stochastic case (we have plotted the implied FX interventions,

exchange rates, and remaining stocks of reserves in the circumstance that the outflow shock

continues occurring). To see how the solutions change as p declines below 1, this figure

should be compared to figure 7 in the previous section. We explain these solutions one by

one and in relation to each other for the remainder of section 5.
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Figure 9. Solutions under full, zero, and partial commitment, p ≤ 1
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In the full-commitment case, reserves are now optimally used such that the marginal value

of intervention is equalized across periods and states where reserves are actually useful, i.e.,

in those circumstances where the shock continues. In other words, Γzt∈{Intervention dates} =

Γ
z
> Γzt/∈{Intervention dates} for some constant Γ

z
. Combining the first order conditions of the

optimization problem with respect to reserves and the exchange rate, we obtain a new Euler

condition that holds during the periods of intervention:

ezt = βpezt+1. (23)

The next proposition summarizes the full-commitment solution in the stochastic case.

Proposition 2 (Full-commitment solution) The optimal FX intervention policy is to

promise positive intervention for a subset of consecutive periods {t1, ..., t2}, provided that the

shock continues occurring. There is zero intervention before t1 and reserves are fully depleted

in period t2. The exchange rate path follows the same expressions as in proposition 1, but

with β replaced by βp, e replaced by ez, and eu replaced by ezu for all u. The intervention

path follows the same expressions as in proposition 1, but with eu replaced by ezu for all u. t1
and t2 satisfy the feasibility condition

∑t2
t=t1

ft = R0 such that ezt2 ≥ βpez and Γzt∈{t1,...,t2−1} =

Γ
z
> Γzt/∈{t1,...,t2−1} for some constant Γ

z
.

Proof. Same as for proposition 1.

Therefore, for our baseline parameter specification which satisfies 1
β

= a+c
a

, the full-

commitment intervention level remains unchanged at z irrespective of p. However, the

depreciation of the exchange rate during the period of intervention becomes more rapid as p

decreases, which indicates that investors expect reserves to be used up earlier. The rationale

for this expectation is provided in figure 9: intervention is promised for earlier periods as p

decreases. For a very temporary shock, i.e., when p is small, intervention begins in period

0, right at the beginning of the outflow episode.

The time-consistent problem follows definition 3 below. Relative to definition 2, we have

already normalized e∗ = 0 and taken into account that intervention only occurs as long as

the shock continues.

Definition 3 (Time-consistent optimization problem) A time-consistent solution com-

prises an FX intervention policy f z (R) and an exchange rate relation ez (R), both conditional

on the outflow shock continuing to occur, which are infinitely-differentiable fixed points of the

Bellman operator:

vTC,z (R) = max
ez ,R′

{
−e

z (R)2

2
+ βpvTC,z (R′)

}
(24)
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subject to modified versions of equations (4) and (6) and the set of feasible exchange rates:

f z (R) = R−R′ ∈ [0, R] (25)

ez (R) =
1

a+ c

(
z − f z (R) + apez (R′)

)
(26)

ez (R) ≥ ez − 1

a+ c
R. (27)

The new time-consistent Euler condition takes the following form:

ez (R)
[
1 + apezR

(
R− f z (R)

)]
≥ βpez

(
R− f z (R)

)
. (28)

Our shock specification is tractable enough that we are able to numerically solve the

time-consistent case.30 Figure 10 illustrates our solutions for f z (R) and ez (R) for the same

baseline parameters as in figure 4, but with different values of the shock persistence p.

Figure 10. Time-consistent fixed-point functions, p ≤ 1
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As the shock becomes more temporary, i.e., p decreases, the time-consistent intervention

increases towards the higher full-commitment level z for all levels of reserves. There are

two reasons for this result, echoing the discussions above about the incentive to postpone

intervention. First, the central bank assigns a lower welfare weight to future periods where

the shock continues, because temporary shocks are unlikely to continue for long. Second, it

is less valuable to bolster investors’ expectations regarding future exchange rates by keeping

reserves in the central bank’s vault, when it is less likely that the shock continues and that

those reserves will then be used. Therefore, even if reserves are low today, the central bank

may wish to almost fully offset a temporary outflow shock today, and correspondingly keep

few reserves for the future.

30fz (R) and ez (R) close to R = 0 satisfy lim
R→0

ezR (R) = βp−1
ap and lim

R→0
fzR (R) = 1−βp

βp
a(1−p)+c

ap .
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As p decreases, the exchange rate function becomes closer to the target e∗, firstly because

the pure-float exchange rate is less depreciated relative to the target, and secondly because

the central bank’s intervention becomes more aggressive.

These results are reflected in figure 9. As p decreases, the time-consistent intervention

becomes higher and begins to fully offset the outflow shock z at the beginning of the outflow

episode. As a result, the exchange rate becomes stabilized closer to the target e∗, and the

large immediate depreciation that we derived in section 4 is avoided.

Both the full-commitment and time-consistent solutions become closer to each other and

to the simple FX intervention rules when the shock becomes more temporary. The full-

commitment intervention is brought earlier in time and eventually coincides exactly with

the volume intervention rule, while the time-consistent intervention level rises to fully offset

the outflow shock z at the beginning of the outflow episode, which happens to be a feature

of both of the simple intervention rules.

5.3. Welfare comparison

The arguments above suggest that relative to the time-consistent solution, the scope for wel-

fare improvements through the use of rules may diminish as the shock persistence p decreases.

Figure 11, which illustrates the welfare levels under full commitment, time consistency, and

simple intervention rules across various levels of κ, shows that this is indeed the case. More-

over, as p decreases, there is a reduction in the range of values of κ for which the simple

intervention rules yield higher welfare than the purely discretionary time-consistent solution.

Figure 11. Welfare comparison, p ≤ 1
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Taking stock, the time consistency problem is more severe for more persistent shocks.

When the shock is a pure one-off (p = 0), the shock is expected to go to zero in all future

periods, so no intervention is expected in the future, and investors’ expectations about next

period’s exchange rate are unaffected by the central bank’s commitment power. Moreover,

the central bank does not expect that reserves will be valuable in future periods. Therefore,
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the central bank solves a simple one-period problem today, which yields an identical policy

in both the full-commitment and time-consistent cases.

When the shock is very persistent (p near 1), it is expected to continue for many periods,

so investors’ expectations regarding the central bank’s future interventions become important

for the exchange rate today, and the central bank also values the ability to intervene in future

periods. In addition, the shock has a higher net present value, so the ZLB on reserves is more

likely to become binding. For all these reasons, the central bank wishes to preserve reserves

to last throughout a long outflow episode. The central bank with full commitment achieves

this by credibly committing to begin an aggressive intervention strategy in future periods,

even if reserves thereby run out. But the time-consistent central bank cannot do this in

the presence of the ZLB on reserves, because it will choose to preserve reserves rather than

spend them when reserves are about to run out. Correspondingly, investors are skeptical of

regarding any promises to intervene aggressively in the future. Therefore, in a model with

a ZLB on reserves, the larger is the shock persistence parameter p, the more damaging is a

lack of commitment power, and the more likely it is that committing to simple intervention

rules can yield welfare gains.31

6. Conclusion

In this paper, we have used a stylized linear-quadratic framework to analyze optimal FX

intervention in the face of outflows in a managed float regime. We have explicitly taken into

account the ZLB on reserves, and we have related the optimal policy for an EME central bank

to some of the key assessments that it needs to make in every outflow episode—specifically,

the level of available reserves and the persistence of the shock. While the precise form of

our optimal solutions for the exchange rate and intervention level depend on our functional

forms for welfare and the exchange rate equation, the qualitative effect of the ZLB on the

time consistency of the solution, and on the comparative levels of intervention and welfare

across different degrees of central bank commitment, should apply across a wide range of

models.

First, we have shown that a central bank with full commitment and limited reserves

optimally uses a combination of intervention and market communication. At the beginning

of an outflow episode, the central bank may not intervene at all, but it does promises to

intervene aggressively in the future, so that the entire reserves stock eventually becomes

depleted if the shock persists. As a result of this commitment, the exchange rate depreciates

gradually to the pure-float level.

31This argument applies to other models with different welfare functions and exchange rate equations,
provided that the probability of reserves being exhausted is above zero in the full-commitment solution.
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Second, we have highlighted a novel time consistency problem when there is a ZLB

on reserves and imperfect arbitrage on the FX market. In the absence of commitment

power, the central bank undertakes only a small level of intervention in all periods. As a

result, there is a large depreciation as soon as the outflow episode begins, which generates a

substantial welfare loss. To mitigate this large immediate depreciation, a central bank with

intermediate commitment power finds it optimal to announce a simple intervention rule,

such as a temporary exchange rate peg or a volume intervention rule.

Third, we have related the optimal FX intervention policy to the persistence of the

shock. The more persistent is the shock, the larger the time consistency problem, and the

more likely that a simple intervention rule achieves welfare gains above the time-consistent

solution. Therefore, in practice, a shock that looks small but is actually potentially persistent

may require the central bank to announce an intervention rule in order to affect the exchange

rate, even if such a rule is not needed for a larger, but far more temporary, shock.

The general message which emerges from our approach is that the characterization of

optimal policy in a managed float regime, away from the bipolar extremes of free floats

and hard pegs, is a non-trivial problem. The empirical effectiveness of FX intervention in

managing the exchange rate does not immediately imply an obvious intervention modality

to be adopted by all EME central banks, but rather opens the door to a host of additional

considerations such as time consistency and the connection between the nature of the outflow

shocks and the specific financial imperfections present in the FX market. Echoing the liter-

ature on inflation targeting regimes, the optimal managed float regime requires investment

in communication, reputation, and rules.
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Appendix

A.1. Constant-outflows case with e∗ adjusting to e

Consider the following time path for the exchange rate target in each period t:

e∗t = e
(
1− λt

)
. (29)

For λ = 1, this equation reverts to the normalization e∗ = 0 in the main text. For λ = 0,

e∗t = e for all t, so it is optimal to let the exchange rate depreciate to the pure-float level

immediately. For λ ∈ (0, 1), which is the case that we focus on here, the target e∗t adjusts

smoothly in an exponential fashion to the pure-float level e.

This model is intended to capture in reduced form an environment where the long-run

desire of the central bank is to adjust the exchange rate to accommodate the permanent shock

(since lim
t→∞

e∗t = e), but where adjusting immediately to the pure-float level e generates short-

run welfare costs (e.g., private sector FX borrowers are forced to deleverage too rapidly), so

that e∗0 6= e.

Substituting equation (29) into definition 1, and taking the first order condition of the

optimization problem with respect to the exchange rate, we can back out the amended value

of the multiplier Γλt on the exchange rate equation, in the absence of intervention:

Γλt =
t∑

u=0

(βλ)u
(

a

a+ c

)t−u
e. (30)

This formula is isomorphic to the one for the model used in subsection 4.1, but with β

replaced by βλ. In figure A.1, we plot the schedule Γλt using the same baseline parameters

as in figure 2.

Figure A.1. Marginal value of intervention in pure-float equilibrium
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The schedule for Γλt is hump-shaped, so the highest marginal value of intervention is

achieved in a period t∗λ that is greater than zero; in other words, at the beginning of the

outflow episode, intervention in the future is more valuable than intervention today (just as

in the baseline model in subsection 4.1). As the parameter λ decreases and the exchange

rate target e∗t adjusts faster to e, the period t∗λ becomes smaller, i.e., the marginal value of

intervention is maximized closer to the beginning of the outflow episode.

A.2. Comparative statics for the full-commitment case

Figure A.2 shows the full-commitment solutions for various values of a and β.

Figure A.2. Full-commitment solution, various a and β
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A.3. Comparative statics for the time-consistent case

Figure A.3 shows the time-consistent solutions for various values of a and β.

Figure A.3. Time-consistent solution, various a and β
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