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destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
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Summary. We introduce a vector version of the ARCH(∞) equation yielding a
simple approach to various models like bilinear or GARCH models. To this aim we
provide an explicit chaotic expansion of a solution for this ARCH(∞) equation, and
show the uniqueness of this solution under reasonable conditions. Independent or
N-Markov approximations of this process allow to simulate their trajectory or to
derive bounds for their weak dependence coefficients as defined by Doukhan and
Louhichi (1999). We finally consider a long range dependent version of this model;
in this case we provide an existence and uniqueness result.

1 Introduction

The purpose of this chapter is to propose a unified framework for the study
of ARCH(∞) processes that are commonly used in the financial econometrics
literature. We extend the study, based on Volterra expansions, of univariate
ARCH(∞) processes by Giraitis et al. [12] and Giraitis and Surgailis [11] to
the multi-dimensional case.

Let {ξt}t∈Z be a sequence of real valued random matrices independent and
identically distributed of size d × m, {aj}j∈N∗ be a sequence of real matrices
m× d, and a be a real vector of dimension m. The vector ARCH(∞) process
is defined as the solution to the recurrence equation:

Xt = ξt



a +

∞
∑

j=1

ajXt−j



 . (1)

The following section 2 displays a chaotic expansion solution to this equa-
tion; we also consider a random fields extension of this model. Some approx-
imations of this solutions are listed in the next section 3, where we consider
approximations by m-dependent sequences, coupling results and approxima-
tions by Markov sequences. Section 4 details the weak dependence properties
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of the model and section 5 provides an existence and uniqueness condition
for the solution of the previous equation; in that case, long range dependence
may occur. The end of this section is dedicated to review examples of this
vector valued model.

The vector ARCH(∞) model nests a large variety of models, the two first
extensions being obvious:

1. The univariate linear ARCH(∞) (LARCH) model, where the Xt and aj

are scalar,
2. The bilinear model, with

Xt = ζt



α +

∞
∑

j=1

αjXt−j



+ β +

∞
∑

j=1

βjXt−j ,

where all variables are scalar, and ζt are iid centered innovations. We set

ξt = (ζt, 1) , a =

(

α
β

)

, aj =

(

αj

βj

)

.

In that case, the expansion (3) is the same as the one used by Giraitis
and Surgailis [11].

3. With a suitable re-parameterization, this vector ARCH(∞) nests the stan-
dard GARCH–type processes used in the financial econometrics literature
for modeling the non-linear structure of the conditional second moments.
The GARCH(p, q) model is defined as

rt = σtεt

σ2
t =

p
∑

j=1

βjσ
2
t−j + γ0 +

q
∑

j=1

γjr
2
t−j γ0 > 0, γj > 0, βi > 0,

where the ε are centered and iid. This model is nested in the class of
bilinear models with the following re-parameterization

α0 =
γ0

1 −
∑

βi
,
∑

αiz
i =

∑

γiz
i

1 −
∑

βizi
,

see Giraitis et al. [10]. The covariance function of the sequence {r2
t } has

an exponential decay, which is implied by the exponential decay of the
sequence of weights αj ; see Giraitis et al. [12].

4. The ARCH(∞) model, where the sequence of weights βj might have either
a exponential decay or a hyperbolic decay.

rt = σtεt, σ2
t = β0 +

∞
∑

j=1

βjr
2
t−j ,

with the following parameterization
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Xt = r2
t , ξt =

(

ε2
t − λ1

κ
, 1

)

, a =

(

κβ0

λ1β0

)

, aj =

(

κβj

λ1βj

)

,

where the ε are centered and iid, λ1 = E(ε2
0), and κ2 = Var(ε2

0). Note
that the first coordinate of ξ0 is thus a centered random variable. Condi-
tions for stationarity of the unidimensional ARCH(∞) model have been
derived using Volterra expansions by Giraitis et al. [12] and Giraitis and
Surgailis [11]. The present paper is a multidimensional generalization of
these previous works.

5. We can consider models with several innovations and variables like:

Zt = ζ1,t



α +

∞
∑

j=1

α1
jZt−j



+ µ1,t



β +

∞
∑

j=1

β1
j Yt−j



+ γ +

∞
∑

j=1

γ1
j Zt−j

Yt = ζ2,t



α +

∞
∑

j=1

α2
jYt−j



+ µ2,t



β +

∞
∑

j=1

β2
j Zt−j



+ γ +

∞
∑

j=1

γ2
j Yt−j

This model is straightforwardly described through equation (1) with d = 2

and m = 3. Here ξt =

(

ζ1,t µ1,t 1
ζ2,t µ2,t 1

)

is a 2×3 iid sequence, aj =





α1
j α2

j

β1
j β2

j

γ1
j γ2

j





is a 3 × 2 matrix and a =





α
β
γ



 is a vector in IR3 and the process

Xt =

(

Zt

Yt

)

is a vector of dimension 2. Dimensions m = 3 and d = 2 are

only set here for simplicity. Replacing m = 3 by m = 6 would allow to
consider different coefficients α, β and γ for both lines in this system of
two coupled equations.
This generalizes the class of multivariate ARCH(∞) processes, defined in
the p-dimensional case as:

Rt = Σ
1
2

t εt,

where Rt is a p–dimensional vector, Σt is a p× p positive definite matrix,
and εt is a p–dimensional vector. Those models are formally investigated
by Farid Boussama in [2]; published references include [3] and [9].
This model is of interest in financial econometrics as the volatility of asset
prices of linked markets, e.g., major currencies in the Foreign Exchange
(FX) market, are correlated, and in some cases display a common strong
dependence structure; see [18]. This common dependence structure can
be modeled with the assumption that the innovations ε1, . . . , εp are cor-
related. An (empirically) interesting case for the bivariate model (Xt, Yt)
is obtained with the assumption that the (ζ1,t, ζ2,t) are cross-correlated.
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2 Existence and Uniqueness in L
p

In the sequel, we set A(x) =
∑

j>x ‖aj‖, A = A(1), where ‖ · ‖ denotes the
matrix norm.

Theorem 2.1 Let p > 0, we denote

ϕ =
∑

j>1

‖aj‖p∧1 (E‖ξ0‖p)
1

p∧1 . (2)

If ϕ < 1, then a stationary solution in Lp to equation (1) is given by:

Xt = ξt



a +
∞
∑

k=1

∑

j1,...,jk>1

aj1ξt−j1 · · · ajk
ξt−j1−···−jk

a



 . (3)

Proof. The norm used for the matrices is any multiplicative norm. We have
to show that expression (3) is well defined under the conditions stated above,
converges absolutely in Lp, and that it satisfies equation (1).
Step 1. We first show that expression (3) is well defined (after the second line
we omit to precise the norms). For p > 1, we have

∑

j1,...,jk>1

‖aj1ξt−j1 · · ·ajk
ξt−j1−···−jk

‖m×m

6
∑

j1,...,jk>1

‖aj1‖m×d · · · ‖ajk
‖m×d‖ξt−j1‖d×m · · · ‖ξt−j1−···−jk

‖d×m

The series thus converges in norm Lp because

∞
∑

k=1

∑

j1,...,jk>1

(E‖aj1ξt−j1 · · · ajk
ξt−j1−···−jk

‖p)
1/p

6

∞
∑

k=1

∑

j1,...,jk>1

‖aj1‖ · · · ‖ajk
‖(E‖ξt−j1‖p)1/p · · · (E‖ξt−j1−···−jk

‖p)1/p

6

∞
∑

k=1

∑

j1,...,jk>1

‖aj1‖ · · · ‖ajk
‖ (E‖ξ0‖p)

k
p

6

∞
∑

k=1

ϕk

The series
∑∞

k=1 ϕk is finite since ϕ < 1, hence the series (3) converges in Lp.
For p < 1, the convergence is defined through the metric dp(U, V ) =

E‖U − V ‖p between vector valued Lp random variables U, V and we start
from



A LARCH(∞) Vector Valued Process 5





∑

j1,...,jk>1

‖aj1ξt−j1 · · · ajk
ξt−j1−···−jk

‖





p

6
∑

j1,...,jk>1

‖aj1ξt−j1 · · · ajk
ξt−j1−···−jk

‖p,

and we use the same arguments as for p = 1.
Step 2. We now show that equation (3) is solution to equation (1):

Xt = ξt



1 +

∞
∑

k=1

∑

j1,...jk>1

aj1ξt−j1 · · ·ajk
ξt−j1−···−jk



 a

= ξt



a +
∑

j1>1

aj1ξt−j1+

+
∞
∑

k=2

∑

j1>1

aj1ξt−j1

∑

j2,...,jk>1

aj2ξt−j1−j2 · · · ajk
ξt−j1−j2−···−jk

a





= ξt



a +
∑

j1>1

aj1ξt−j1

(

a+

+

∞
∑

k=2

∑

j2,...,jk>1

aj2ξ(t−j1)−j2 · · · ajk
ξ(t−j1)−j2−···−jk

a
)





= ξt



a +
∑

j>1

ajXt−j



 .

Remark 2.1 The uniqueness of this solution is not demonstrated without
additional condition; see Theorem 2.2 and section 5 below.

Theorem 2.2 Assume that p > 1 then from (2), ϕ =
∑

j ‖aj‖‖ξ0‖p. Assume
ϕ < 1. If a stationary solution (Yt)t∈ZZ to equation (1) exists (a.s.), if Yt is
independent of the sigma-algebra generated by {ξs; s > t}, for each t ∈ ZZ,
then this solution is also in Lp and it is (a.s.) equal to the previous solution
(Xt)t∈ZZ defined by equation (3).

Proof. Step 1. We first prove that ‖Y0‖p < ∞. From equation (1) and from
{Yt}t∈ZZ’s stationarity, we derive

‖Y0‖p 6 ‖ξ0‖p



‖a‖ +

∞
∑

j=1

‖aj‖‖Y0‖p



 < ∞,
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hence, the first point in the theorem follows from:

‖Y0‖p 6
‖ξ0‖p‖a‖

1 − ϕ
< ∞.

Step 2. As in [12] we write recursively Yt = ξt

(

a +
∑

j>1 ajYt−j

)

= Xm
t +Sm

t ,

with

Xm
t = ξt



a +

m
∑

k=1

∑

j1,··· ,jk>1

aj1ξt−j1 · · · ajk
ξt−j1···−jk

a



 ,

Sm
t = ξt





∑

j1,··· ,jm+1>1

aj1ξt−j1 · · · ajm
ξt−j1···−jm

ajm+1Yt−j1···−jm



 .

We have

‖Sm
t ‖p 6 ‖ξ‖p

∑

j1,··· ,jm+1>1

‖aj1‖ · · · ‖ajm+1
‖‖ξ‖m

p ‖Y0‖p = ‖Y0‖pϕ
m+1.

We recall the additive decomposition of the chaotic expansion Xt in equation
(3) as a finite expansion plus a negligible remainder that can be controlled
Xt = Xm

t + Rm
t where

Rm
t = ξt





∑

k>m

∑

j1,··· ,jk>1

aj1ξt−j1 · · · ajk
ξt−j1···−jk

a



 ,

satisfies

‖Rm
t ‖p 6 ‖a‖‖ξ0‖p

∑

k>m

ϕk
6 ‖a‖‖ξ0‖p

ϕm

1 − ϕ
→ 0.

Then, the difference between those two solutions is controlled as a function of
m with Xt − Yt = Rm

t − Sm
t , hence

‖Xt − Yt‖p 6 ‖Rm
t ‖p + ‖Sm

t ‖p

6
ϕm

1 − ϕ
‖a‖‖ξ0‖p + ‖Y0‖pϕ

m

6 2
ϕm

1 − ϕ
‖a‖‖ξ0‖p

thus, Yt = Xt a.s.

We also consider the following extension of equation (1) to random fields
{Xt}t∈ZZD :
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Lemma 2.1 Assume that aj are m × d-matrices now defined for each j ∈
ZZD \{0}. Fix an arbitrary norm ‖ ·‖ on ZZD. We extend the previous function
A to A(x) =

∑

‖j‖>x ‖aj‖, A = A(1) and we suppose with p = ∞ that ϕ =

A‖ξ0‖∞ < 1. Then the random field

Xt = ξt



a +
∞
∑

k=1

∑

j1 6=0

· · ·
∑

jk 6=0

aj1ξt−j1 · · · ajk
ξt−j1−···−jk

a



 (4)

is a solution to the recursive equation:

Xt = ξt



a +
∑

j 6=0

ajXt−j



 , t ∈ ZZD. (5)

Moreover, each stationary solution to this equation is also bounded and equals
Xt, a.s.

The proof is the same as before, we first prove that any solution is bounded
and we expand it as the sum of the first terms in this chaotic expansion, up to
a small remainder (wrt to sup norm); the only important modification follows
from the fact that now j1 + · · · + jℓ may really vanish for nonzero ji’s which
entails that the bound with expectation has to be replaced by upper bounds.

Remark 2.2 In the previous lemma, the independence of the ξ’s does not
play a role. We may have stated it for arbitrary random fields {ξt} such that
‖ξt‖∞ 6 M for each t ∈ ZZD; such models with dependent inputs are inter-
esting but assumptions on the innovations are indeed very strong. This means
that such models are heteroscedastic but with bounded innovations: according
to [14], this restriction excludes extreme phenomena like crashes and bubbles.
Mandelbrot school has shown from the seminal paper [15] that asset prices
returns do not have a Gaussian distribution as the number of extreme devia-
tions, the so–called “Noah effects”, of asset returns is far greater than what
is allowed by the Normal distribution, even with ARCH–type effects. It is the
reason why this extension is not pursued in the present paper.

3 Approximations

This section is aimed to approximate a sequence {Xt} given by (3), solu-
tion to eqn. (1) by a sequence {X̃t}. We shall prove that we can control the
approximation error E‖Xt − X̃t‖ within reasonable small bounds.

3.1 Approximation by Independence

The purpose is to approximate Xt by a random variable independent of X0.
We set
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X̃t = ξt



a +
∞
∑

k=1

∑

j1+···+jk<t

aj1ξt−j1 · · · ajk
ξt−j1−···−jk

a



 .

Proposition 3.1 Define ϕ from (2). A bound for the error is given by:

E‖Xt − X̃t‖ 6 E‖ξ0‖
(

E‖ξ0‖
t−1
∑

k=1

kϕk−1A

(

t

k

)

+
ϕt

1 − ϕ

)

‖a‖.

Furthermore, we have as particular results that if b, C > 0 and q ∈ [0, 1), then
for a suitable choice of constants K, K ′:

E‖Xt − X̃t‖ 6

{

K (log(t))b∨1

tb , for Riemannian decays A(x) 6 Cx−b,

K ′(q ∨ ϕ)
√

t, for geometric decays A(x) 6 Cqx.

Remark 3.1 Note that in the first case this decay is essentially the same
Riemannian one while it is sub-geometric (like t 7→ e−c

√
t) when the decay of

the coefficients is geometric.

Remark 3.2 In the paper Riemannian or Geometric decays always refer to
the previous relations.

Idea of the Proof. A careful study of the terms in Xt’s expansion which do
not appear in X̃t entails the following bound with the triangular inequality.
For this, quote that if j1 + · · · + jk > t for some k > 1 then, at least, one of
the indices j1, . . . , or jk is larger than t/k. The additional term corresponds
to those terms with indices k > t in the expansion (3).

The following extension to the case of the random fields determined in
lemma 2.1 is immediate by setting

X̃t = ξt






a +

∞
∑

k=1

∑

j1, . . . , jk 6= 0

‖j1‖ + · · · + ‖jk‖ < ‖t‖

aj1ξt−j1 · · ·ajk
ξt−j1−···−jk

a






.

Proposition 3.2 The random field (Xt)t∈ZZD defined in lemma 2.1 satisfies:

E‖Xt − X̃t‖ 6 E‖ξ0‖



‖ξ0‖∞
∑

16k<‖t‖
kϕk−1A

(‖t‖
k

)

+
ϕ‖t‖

1 − ϕ



 ‖a‖.

3.2 Coupling

First note that the variable X̃t which approximates Xt does not follow the
same distribution. For dealing with this issue, it is sufficient to construct a
sequence of iid random variables ξ′i which follow the same distribution as the
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one of the ξi, each term of the sequence being independent of all the ξi. We
then set

ξ∗t =

{

ξt if t > 0
ξ′t if t 6 0

, and X∗
t = ξt



a +
∞
∑

k=1

∑

j1,...,jk

aj1ξ
∗
t−j1 · · ·ajk

ξ∗t−j1−···−jk
a



 .

Coefficients τt for the τ–dependence introduced by Dedecker and Prieur [6]
are easily computed. In this case, we find the upper bounds from above, up
to a factor 2:

τt = E‖Xt − X∗
t ‖ 6 2E‖ξ0‖

(

E‖ξ0‖
t−1
∑

k=1

kϕk−1A

(

t

k

)

+
ϕt

1 − ϕ

)

‖a‖;

see also Rüschendorf [17], Prieur [16]. These coefficients τk are defined as
τk = τ(σ(Xi, i 6 0), Xk) where for each random variable X and each σ-
algebra M one sets

τ(M, X) = E

{

sup
Lip f61

∣

∣

∣

∣

∫

f(x)IPX|M(dx) −
∫

f(x)IPX(dx)

∣

∣

∣

∣

}

where IPX and IPX|M denotes the distribution and the conditional distribution
of X on the σ–algebra M and Lip f = supx 6=y |f(x) − f(y)|/‖x − y‖.

3.3 Markovian Approximation

We consider equation (1) truncated at the order N : Yt = ξt(a+
∑N

j=1 ajYt−j).
The solution considered above can be rewritten as

XN
t = ξt



a +

∞
∑

k=1

∑

N>j1,...,jk>1

aj1ξt−j1 · · ·ajk
ξt−j1−···−jk

a



 .

We can easily find an upper bound of the error: E‖Xt−XN
t ‖ 6

∑∞
k=1 A(N)k.

As in proposition 3.1, in the Riemannian case, this bound of the error writes
as C

∑∞
k=1 N−bk 6 C/(N b − 1) with b > 1, while in the geometric case, this

writes as CqN/(1 − qN ) 6 CqN/(1 − q), 0 < q < 1.

4 Weak Dependence

Consider integers u, v > 1. Let i1 < · · · < iu, j1 < · · · < jv be integers with
j1−iu > r, we set U and V for the two random vectors U = (Xi1 , Xi2 , . . . , Xiu

)
and V = (Xj1 , Xj2 , . . . , Xjv

). We fix a norm ‖ · ‖ on R
d. For a function

h :
(

R
d
)w

→ R we set

Lip(h) = sup
x1,y1,...,xw,yw∈Rd

|h(x1, . . . , xw) − h(y1, . . . , yw)|
∑w

i=1 ‖xi − yi‖
.
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Theorem 4.1 Assume that the coefficient defined by (2) satisfies ϕ < 1. The
solution (3) to the equation (1) is θ−weakly dependent, see [4]. This means
that:

|Cov(f(U), g(V ))| 6 2v‖f‖∞ Lip(g)θr,

for any integers u, v > 1, i1 < · · · < iu, j1 < · · · < jv such that j1 − iu > r;
with

θr = E‖ξ0‖
(

E‖ξ0‖
r−1
∑

k=1

kϕk−1A
( r

k

)

+
ϕr

1 − ϕ

)

‖a‖.

Proof. For calculating a weak dependence bound, we approximate the vector
V by the vector V̂ = (X̂j1 , X̂j2 , . . . , X̂jv

), where we set

X̂t = ξt



a +

∞
∑

k=1

∑

j1+···+jk<s

aj1ξt−j1 · · ·ajk
ξt−j1−···−jk

a



 .

Note that for each index j ∈ ZZ, X̂j is independent of (Xj−s)s>r. Note that

for 1 6 k 6 v, E‖Xjk
− X̂jk

‖ 6 θr defined in theorem 4.1. Then

|Cov(f(U), g(V ))| 6

∣

∣

∣E
(

f(U)(g(V ) − g(V̂ )
)

− E(f(U))E(g(V ) − g(V̂ ))
∣

∣

∣

6 2‖f‖∞E
∣

∣

∣g(V ) − g(V̂ )
∣

∣

∣

6 2‖f‖∞ Lip(g)

v
∑

k=1

E‖Xjk
− X̂jk

‖

6 2v‖f‖∞ Lip(g)θr.

Remark 4.1 We obtain explicit expressions for this bound in proposition 3.1
for the Riemannian and geometric decay rates.

Remark 4.2 In the case of random fields the η-weak dependence condition
in [8] or [7] holds in a similar way with

ηr = 2E‖ξ0‖



‖ξ0‖∞
∑

k<r/2

kϕk−1A
( r

k

)

+
ϕ[r/2]

1 − ϕ



 ‖a‖,

which means that the previous bound now writes as

|Cov(f(U), g(V ))| 6
(

u‖g‖∞ Lip(f) + v‖f‖∞ Lip(g)
)

ηr.

The argument is the same except for the fact that now Û and V̂ are inde-
pendent vectors with truncations at a level s = [r/2] but V̂ and U are not
necessarily independent (recall that independence of U and V̂ follows from
s > r in the proof for the causal case). This point makes the previous bound a
bit more complicated than the one in theorem 4.1 and it explains the appear-
ance of the factor 2 in the expression of ηr.
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Remark 4.3 Those weak dependence conditions imply various limit theorems
both for partial sums processes and for the empirical process (see [8], [4] and
[7]).

5 L
2 Properties

For the univariate case, the uniqueness of a stationary solution to equation
(1) has been demonstrated by Giraitis et al. [12].

We first present an existence and uniqueness condition for the model in
L2. The situation is then no longer necessarily weakly dependent.

Theorem 5.1 Assume that the iid sequence {ξt} satisfies E(ξk) = 0.

Assume that the matrix S =

∞
∑

k=1

a′
kE(ξ′kξk)ak has a spectral radius which

satisfies ρ(S) < 1.
Then there exists a stationary solution in L2 to equation (1) given by (3).
Moreover the solution in L2 to equation (1) is unique.

Remark 5.1 • The assumption ρ(S) < 1 implies ξt ∈ L2 for t ∈ ZZ.
• In [11], the example 2 of the bilinear model displays the double long mem-

ory property when the corresponding series αj and βj are not summable
but ∞

∑

j=1

(

α2
jEζ2

0 + β2
j

)

< 1.

As a particular case, the squares of the LARCH(∞) process, example 1,
display long–range dependence as well. Those authors prove that the corre-
sponding partial sums process converges to the fractional Brownian Motion,
appropriately normalized (with normalization ≫ √

n).
• Models GARCH(p, q), in example 3, are always weakly dependent, in the

sense of [8].
• Note that [12] and [11] prove that the stationary ARCH(∞) model, de-

scribed as example 4 in section 1, is not long range dependent in the previ-
ous sense; more precisely the sequence of partial sums processes, normal-
ized with

√
n, converges to the Brownian Motion.

Proof. Step 1: existence. Define T = E(ξ′kξk). Considering the chaotic solution
(3) and setting

Ct(k2, . . . , kℓ) = ξtak2
ξt−k2

· · · akℓ
ξt−k2···−kℓ

a

we write E(X ′
tXt) = a′Eξ′tξta + B = a′Ta + B where
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B =
∑

ℓ,k1,...,kℓ>1

EC′
t−k1

(k2, . . . , kℓ)a
′
k1

Tak1
Ct−k1

(k2, . . . , kℓ)

=
∑

ℓ,k1,...,kℓ

EC′
t−k1

(k2, . . . , kℓ)a
′
k1

Eξ′t−k1
ξt−k1

ak1
Ct−k1

(k2, . . . , kℓ)

=
∑

ℓ,k1,...,kℓ

EC′
t−k1

(k2, . . . , kℓ)
(

Ea′
k1

ξ′t−k1
ξt−k1

ak1

)

Ct−k1
(k2, . . . , kℓ)

=
∑

ℓ,k1,...,kℓ

EC′
t(k2, . . . , kℓ)

(

Ea′
k1

ξ′t−k1
ξt−k1

ak1

)

Ct(k2, . . . , kℓ)

=
∑

ℓ,k2,...,kℓ

EC′
t(k2, . . . , kℓ)SCt(k2, . . . , kℓ)

6 ρ(S)
∑

ℓ,k2,...,kℓ

EC′
t(k2, . . . , kℓ)Ct(k2, . . . , kℓ)

6 E(ξ0a)′(ξ0a)
∞
∑

ℓ=1

ρ(S)ℓ (recursively)

6 a′aρ(T )

∞
∑

ℓ=1

ρ(S)ℓ,

hence,

E(X ′
tXt) 6 a′Ta + a′a

ρ(T )

1 − ρ(S)
< ∞ (6)

In the previous relations we both use the fact that the ξt are centered and iid
and the relation v′Av 6 v′vρ(A) which holds if A denotes a non-negative d×d
matrix and v ∈ IRd. This conclude the proof of the existence of a solution in
L2.
Step 2: L2 uniqueness. Let now X1

t and X2
t be two solutions to equation (1)

in L2. Define X̃t = X1
t − X2

t , then X̃t is solution to

X̃t = ξtÃt, Ãt =

∞
∑

k=1

akX̃t−k. (7)

Now we use (7) and the fact that X̃t is centered and thus EX̃sX̃t = 0 for
s 6= t to derive
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E
(

(X̃tg)′(X̃tg)
)

=
∞
∑

k=1

g′E
(

X̃ ′
t−ka′

t−kTat−kX̃t−k

)

g

=

∞
∑

k=1

g′E
(

X̃ ′
ta

′
t−kTat−kX̃t

)

g

= g′E
(

X̃ ′
tSX̃t

)

g

= E
(

(X̃tg)′S(X̃tg)
)

6 ρ(S)E
(

(X̃tg)′(X̃tg)
)

From equation (6), this expression is finite and thus the assumption ρ(S) < 1
concludes the proof.

Remark 5.2 The proof does not extend to the case of random fields because
in this case the previous arguments of independence cannot be used. In that
case we cannot address the question of uniqueness.

The previous L2 existence and uniqueness assumptions do not imply that
∑

j>1 ‖aj‖ < ∞, thus this situation is perhaps not a weakly dependent one.
Giraitis and Surgailis [11], prove results both for the partial sums processes of
Xt and X2

t −EX2
t . In our vector case the second problem is difficult and will

be addressed in a forthcoming work. However Xt is now the increment of a
(vector valued-)martingale and thus we partially extend Theorem 6.2 in [11],
providing a version of Donsker’s theorem for partial sums processes of {Xt}.

Proposition 5.1 Assume that the assumptions in theorem 5.1 hold. Then
Sn(t)/

√

VarSn(t) converges to ΣW (t), if Sn(t) =
∑

16i6nt Xi for 0 6 t 6 1

and where W (t) is a IRd valued Brownian motion and Σ is a symmetric non
negative matrix such that Σ2 is the covariance matrix of X0. The convergence
holds for finite dimensional distributions.

Remark 5.3 • The convergence only holds for any k-tuples (t1, . . . , tk) ∈
[0, 1]k and since the section is related to L2 properties we cannot use the
tightness arguments in [11] to obtain the Donsker theorem; indeed tight-
ness is obtained through moment inequalities of order p > 2. Lp existence
conditions are obtained in [11] for the bilinear case if p = 4; the method
is based on the diagram formula and does not extend simply to this vec-
tor valued case. A bound for the moments of order p > 2 of the partial
sum process Sn(t) can be obtained using Rosenthal inequality, Theorem
2.11 in [13], if E‖Xt‖p < ∞. This inequality would imply the functional
convergence in the Skohorod space D[0, 1] if p > 2.

• If Eξ0 6= 0 (as for the case of the bilinear model in [11]), we may write

Xt = ∆Mt + Eξ0

(

a +
∑∞

j=1 ajXt−j

)

where
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∆Mt = (ξt − Eξt)



a +
∞
∑

j=1

ajXt−j





is a martingale increment. This martingale also obeys a central limit the-
orem. then,

n−1/2Sn(t) → Σ̄W (t),

where W (t) is a vector Brownian motion, where Σ̄′Σ̄ = Σ. If Eξ0 = 0 this
is a way to prove proposition 5.1, which is a multi-dimensional extension
of the proof in [11].
For the case of the bilinear model, Giraitis and Surgailis also prove the
(functional) convergence of the previous sequence of process to a Fractional
Brownian Motion in [11]. For this, Riemannian decays of the coefficients
are assumed. The covariance function of the process is also completely
determined to prove such results; this is a quite difficult point to extend to
our vector valued frame.

• A final comment concerns the analogue for powers of Xt which, if suitably
normalized, are proved to converge to some higher order Rosenblatt process
in [11] for the bilinear case. We have a structural difficulty to extend it; the
only case which may reasonably be addressed is the real valued one (d = 1),
but it also presents very heavy combinatorial difficulties. Computations for
the covariances of the processes (Xk

t )t∈ZZ will be addressed in a forthcoming
work in order to extend those results.

Acknowledgements. The authors are grateful to the referees for their valu-
able comments.
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