Table of Contents

Essential numerical tools and perturbation analysis (2.b)

Day 2: Differentiation

Differentiation Flavours

Finite Differences

Finite Differences: Higher order

Exercise 1

Symbolic Differentiation

Julia Packages:

Exercise 2

Automatic Differentiation

Simple example

Technical remark

Forward vs Reverse Accumulation Mode

Libraries for AutoDiff

Essential numerical tools and perturbation analysis (2.b)

Day 2: Differentiation

Pablo Winant

African Econometric Society Workshop 14/12/23

Differentiation Flavours

Several approaches are available to differentiate functions:

- 1. Manual
- 2. Finite Differences
- 3. Symbolic Differentiation
- 4. Automatic Differentiation

Lots of packages

Finite Differences

- Choose small $\epsilon>0$, typically $\sqrt{machine\ eps}$
- Forward Difference scheme:
 - $\circ~f'(x)pprox rac{f(x+\epsilon)-f(x)}{\epsilon}$
 - precision: $o(\epsilon)$
 - \circ bonus: if $f(x+\epsilon)$ unavailable, one can compute $f(x)-f(x-\epsilon)$ instead (Backward)
- Central Difference scheme:
 - $\circ~f'(x)pproxrac{f(x+\epsilon)-f(x-\epsilon)}{2\epsilon}$
 - average of forward and backward
 - precision: $o(\epsilon^2)$

Finite Differences: Higher order

· Central formula:

$$f''(x)pprox \qquad rac{f'(x)-f'(x-\epsilon)}{\epsilon}pprox rac{(f(x+\epsilon))-f(x))-(f(x)-f(x-\epsilon))}{\epsilon^2} \ = \qquad \qquad rac{f(x+\epsilon)-2f(x)+f(x-\epsilon)}{\epsilon^2}$$

- precision: $o(\epsilon)$
- Generalizes to higher order but becomes more and more innacurate

Exercise 1

Use finite differences to compute the derivative of function sin(x)

1 Enter cell code...

Try packages FiniteDiff.jl or FiniteDifferences.jl

1 Enter cell code...

Symbolic Differentiation

- manipulate the tree of algebraic expressions
 - o implements various simplification rules
- requires mathematical expression
- can produce mathematical insights
- sometimes inaccurate:

$$\circ$$
 cf: $\left(\frac{1+u(x)}{1+v(x)}\right)^{100}$

Julia Packages:

- Lots of <u>packages</u>
- FiniteDiff.jl, FiniteDifferences.jl, SparseDiffTools.jl
 - careful implementation of finite diff
- Calculus.jl:
 - o pure julia
 - finite difference
 - symbolic calculation
- SymEngine.jl
 - fast symbolic calculation
- Symbolics.jl
 - o fast, pure Julia
 - less complete than SymEngine

Exercise 2

Use Symbolics.jl to differentiate the expression sqrt(sin(x))

1 using Symbolics

1 Enter cell code...

Automatic Differentiation

- does not provide mathematical insights but solves the other problems
- can differentiate any piece of code
- two flavours
 - forward accumulation
 - reverse accumulation

Simple example

Say we want to calculate the differential of the function

```
function f(x::Float64)
    a = x + 1
    b = x^2
    c = sin(a) + a + b
end
```

By following simple differentiation rules, it can be automatically rewritten as:

```
function f(x::Float64)

# x is an argument
x_dx = 1.0

a = x + 1
a_dx = x_dx

b = x^2
b_dx = 2*x*x_dx

t = sin(a)
t_x = cos(a)*a_dx

c = t + a + b
c_x = t_dx + a_dx + b_dx

return (c, c_x)
end
```

That is the **forward accumulation mode**.

```
1 ## Compatible with control flow
2
```

```
1 using ForwardDiff: Dual
```

Dual{Nothing}(0.6930471905599447,0.0)

```
1 let
2          x = Dual(1.0, 1.0)
3          a = 0.5*x
4          b = sum([(x)^i/i*(-1)^(i+1) for i=1:5000])
5          # compare with log(1+x)
6 end
```

Dual{Nothing}(2.718281828459045,2.718281828459045,1.0)

1 #Example with jacobian

Technical remark

- autodiff libraries, use special types and operator overloading to perform operations (like Dual numbers)
- this relies on Julia duck-typing ability
 - o so don't specify too precisely type arguments for functions you want to autodiff
- This works:

```
using ForwardDiff

f(x) = [x[1] + x[2], x[1]*x[2]]

ForwardDiff.jacobian(f, [0.4, 0.1])
```

• This doesn't:

```
using ForwardDiff
g(x::Vector{Float64}) = [x[1] + x[2], x[1]*x[2]]
ForwardDiff.jacobian(g, [0.4, 0.1])
```

Forward vs Reverse Accumulation Mode

- Forward Accumulation mode: isomorphic to dual number calculation
 - compute tree with values and derivatives at the same time
 - $\circ \;\;$ efficient for $f: R^n
 ightarrow R^m$, with n << m
 - (keeps lots of empty gradients when n >> m)
- Reverse Accumulation / Back Propagation
 - $\circ \;\;$ efficient for $f: R^n o R^m$, with m << n
 - requires data storage (to keep intermediate values)
 - graph / example
 - Very good for machine learning:
 - ullet e.g. $abla_{ heta}F(x; heta)$ where F can be an objective

Libraries for AutoDiff

- See JuliaDiff
 - ForwardDiff.il

- ReverseDiff.il
- Zygote.jl
- Deep learning framework:

* Jacobian Calls (df/dx): 6

1 nlsolve(fun!, [0.1, 0.2], autodiff = :forward)

- higher order diff w.r.t. any vector -> tensor operations
- Flux.jl, MXNet.jl, Tensorflow.jl
- Other libraries like *NLsolve* or *Optim.jl* rely on on the former libraries to perform automatic differentiation automatically.

```
1 using NLsolve
fun! (generic function with 1 method)
 1 function fun!(F, x)
       F[1] = (x[1]+3)*(x[2]^3-7)+18
       F[2] = \sin(x[2] * \exp(x[1]) - 1)
 4 end
Results of Nonlinear Solver Algorithm
* Algorithm: Trust-region with dogleg and autoscaling
* Starting Point: [0.1, 0.2]
* Zero: [3.7695438451406987e-13, 1.0000000000009226]
* Inf-norm of residuals: 0.000000
* Iterations: 5
 * Convergence: true
   * |x - x'| < 0.0e + 00: false
   * |f(x)| < 1.0e-08: true
* Function Calls (f): 6
```