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Essential numerical tools and
perturbation analysis (2.b)

Day 2: Differentiation
Pablo Winant

African Econometric Society Workshop 14/12/23

Differentiation Flavours

Several approaches are available to differentiate functions:

1. Manual
2. Finite Differences
3. Symbolic Differentiation

4. Automatic Differentiation

Lots of packages

Finite Differences

e Choose small € > 0, typically \/machine eps
 Forward Difference scheme:
o f!(z) ~ f(93+62—f(97)
o precision: o(¢)
o bonus: if f(z + €) unavailable, one can compute f(z) — f(x — €) instead (Backward)

e Central Difference scheme:

o f!(z) ~ f($+6)2—6f($—€)

o average of forward and backward
o precision: o(e?)
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Finite Differences: Higher order

e Central formula:

P~ L@F@=9  (e+d)~f@) - (fe) - fz—2)

) Fa+€) — 2f(z) + Fla— ¢

€2

* precision: o(e)
e Generalizes to higher order but becomes more and more innacurate

Exercisel

Use finite differences to compute the derivative of function sin(x)

Try packages FiniteDiff.jl or FiniteDifferences.jl

Symbolic Differentiation

e manipulate the tree of algebraic expressions
o implements various simplification rules

e requires mathematical expression

e can produce mathematical insights

e sometimes inaccurate:

o cf ()™
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Julia Packages:

Lots of packages
FiniteDiffjl, FiniteDifferences.jl, SparseDiffTools.jl
o careful implementation of finite diff

Calculus.jl:
o purejulia
o finite difference

o symbolic calculation

SymEngine.jl

o fast symbolic calculation

Symbolics.jl
o fast, pureJulia

o less complete than SymEngine

Exercise 2
Use Symbolics. jl to differentiate the expression sqrt(sin(zx))

using Symbolics

Automatic Differentiation

e does not provide mathematical insights but solves the other problems
e can differentiate any piece of code
 two flavours

o forward accumulation

o reverse accumulation

Simple example

Say we want to calculate the differential of the function

localhost:1234/edit?id=2ba054b0-9b2b-11ee-1cea-ab3088a47d10

a4/7


https://juliadiff.org/

12/15/23, 11:47 AM day_2_2_differentiation

function f(x::Float64)

a=x+1
b = xA2
c =sin(a) + a + b

end

By following simple differentiation rules, it can be automatically rewritten as:

function f(x::Float64)

# x 1s an argument
x_dx = 1.0

a=x+1
a_dx = x_dx

b = xA2
b_dx = 2%x%x_dx

t = sin(a)
t_x = cos(a)xa_dx

—+

+a+b
t_dx + a_dx + b_dx

>
1]

c
c-
return (c, c_x)

end

That is the forward accumulation mode.

## Compatible with control flow

using ForwardDiff: Dual

Dual{Nothing}(0.6930471905599447,0.0)

let
X = Dual(1.0, 1.0)
a = 0.5xx
b = sum([(x)*i/i%x(-1)*(i+1) for i=1:5000])
# compare with log(1+x)
end

Dual{Nothing}(2.718281828459045,2.718281828459045,1.0)

let
#generalizes nicely to gradient computations
x = Dual(1.0, 1.0, 0.0)
y = Dual(1.0, 0.0, 1.0)
exp(x) + log(y)
end
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#Example with jacobian

Technical remark

 autodiff libraries, use special types and operator overloading to perform operations (like Dual
numbers)
e this relies on Julia duck-typing ability
o so don't specify too precisely type arguments for functions you want to autodiff

e This works:

using ForwardDiff

f(x) = [x[1] + x[2], x[1]*x[2]]
ForwardDiff.jacobian(f, [0.4, 0.1])

e This doesn't:

using ForwardDiff
g(x::Vector{Float64}) = [x[1] + x[2], x[1]%x[2]]
ForwardDiff.jacobian(g, [0.4, 0.1])

Forward vs Reverse Accumulation Mode

e Forward Accumulation mode: isomorphic to dual number calculation
o compute tree with values and derivatives at the same time
o efficientfor f : R® — R™, withn << m
= (keeps lots of empty gradients when . >> m)
e Reverse Accumulation / Back Propagation
o efficientfor f: R® - R™ withm << n
o requires data storage (to keep intermediate values)
o graph /example
o Very good for machine learning:
» e.g. VoF(x;6) where F can be an objective

Libraries for AutoDiff

e See JuliaDiff
o ForwardDiffjl
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o ReverseDiffjl

o Zygote.jl

e Deep learning framework:
o higher order diff w.rt. any vector -> tensor operations
o Flux.jl, MXNetjl, Tensorflow.jl

e Other libraries like NLsolve or Optim.jl rely on on the former libraries to perform automatic

differentiation automatically.

using NLsolve

fun! (generic function with 1 method)
function fun!(F, x)
F[1] = (x[1]+3)%(x[2]23-7)+18
F[2] = sin(x[2]%exp(x[1])-1)

end

Results of Nonlinear Solver Algorithm

% Algorithm: Trust-region with dogleg and autoscaling
Starting Point: [0.1, 0.2]

Zero: [3.7695438451406987e-13, 1.0000000000009226 ]
Inf-norm of residuals: 0.000000

Iterations: 5

Convergence: true

* |x - x'| < 0.0e+00: false

* |f(x)| < 1.0e-08: true

Function Calls (f): 6

% Jacobian Calls (df/dx): 6

nlsolve(fun!, [0.1, 0.2], autodiff = :forward)

k ok ok %k ok

*
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