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Essential numerical tools and
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perturbation analysis (2.a)
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Day 2: Perturbation Analysis
Pablo Winant

African Econometric Society Workshop 14/12/23

When doing modeling (not only in econonomics), we often encounters nonlinear systems that have no

closed form but a steady-state.

The solution then consists in characterizing the variables in a neighbourhood of the steady-state and
solve for them using a linear approximation of the model.

The result is a linear approximation of the solution.
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In principle, the same approach can be carried out for higher orders of approximation.
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Implicit Function Theorem

The perturbation approach is closely related to the Implicit Functions Theorem.

Assume we know the relation between two variables z € R™ andy € R™: f(z,y) = 0.
Assume we know that a particular pair satisfies this relation f(zg, o)

Then, if f; (o, yo) is invertible, it is possible to construct a local approximation of a function ¢ such

that y = ¢(z) at least in the vincinity of zg.

In practice, one applies the method of unknown coefficients.

Under suitable assumptions on f, the .FT. actually implies the existence of a such a function on a

global definition space.

» unknown coefficients
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Two very topical applications in (macro)-
economics

DSGE Model

The perturbation approach works so well it has spurred the development of a full class of models, the
Dynamic Stochastic General Equilibrium Models (DSGE).

These models were able to include all elements from the New Keynesian synthesis and the availability

of an easy-to-use solution method, made it possible to:

e incorporate new theories into the models
e interpret models predictions using impulse response functions
e estimate models using statistical tools

Nowadays all central banks have some form of DSGE model

e Generally based on midsize model from Smets & Wouters (10 equations)
o (IMF/GIMF, EC/Quest, ECB/, NYFed/FRBNY)
e but have grown up a lot (>>100 equations)
e Institutions are (slowly) diversifying their model portfolios
o CGEs
o Agent-based
o Semi-structural models (again)

o Heterogenous Agents

This paper argues that a big determinant in the development of DSGE models is easy availability

of modeling tools like Dynare.

Heterogeneous Agents Modeling

Nowadays there are lots of models featuring a continuous distribution of agents (firms, households,

banks)

These models are fully nonlinear (possibly with kinks) when it comes to the idiosyncratic decision

variables of each agent.
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But the dependence in aggregate shocks is highly non-tractable.

A common approach consists in:

e computing a fully-nonlinear stationary distributinon of agents (the steady-state)
e perturbing it with respect to the aggregate shocks

¢ Said perturbation has a lot in common with simple DSGEs
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DSGE Modeling

Dynare has popularized the following modeling approach:

e write a model:
o equations
o calibration of paramters
o steady-state guess
e check that steady-state is correct
o if not try to find one numerically
o if no luck: go back to the model
e check that model is well-specified (Blanchard-Kahn)
o if not: go back to modeling

e enjoy the simulations...

Dynare

e an opensource tool to solve DSGE models
e amodelling language
e primary Matlab based but

o Fortran, Gauss, in the past

o versions in Octave

o a WIPin]Julia
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The RBC Model

The planner version:

1-o n-1
e objective: max com Eo [Z Bt (it_—a — X:;t_l )]
¢:>0,y:>c:,n:>0,1>n,
Under the following constraints:

o production: g; = exp(2;)k{ ln%_a

e investment: iy = q¢ — C¢
o capital law of motion: k; = (1 — 6)ks—1 +

e productivity law of motion: z; = (1 — p)z¢—1 + €

Where €; is an i.i.d shock, normally distributed.
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RBC Model First Order Conditions

The maximization program yields the following first order conditions:
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optimal investment: (¢z) ™ = BE¢ [(ce+1) ™ (1 — 8) + ae®1k* 'ny )]
o optimal labour supply: xn; = (1 — a)e*ki—1%(ns) ~*(ct) ™"

e production: g; = exp(z;)k;_1“n,®

e investment: iy = q¢ — ¢t

o capital law of motion: k; = (1 — §)k¢—1 + 44

o productivity law of motion: z; = (1 — p)zs—1 + €
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Where €; is an i.i.d shock, normally distributed with standard deviation o.

localhost:1234/edit?id=456389d0-9b1c-11ee-0716-f9ed46b96bbe 19/33



12/15/23, 11:46 AM day_2_1_intro

localhost:1234/edit?id=456389d0-9b1c-11ee-0716-f9ed46b96bbe 20/33



12/15/23, 11:46 AM day_2_1_intro

Conventions

Note that in this set of equations we follow the dynare conventions:

 no distinction between states and controls:
o endogenous variables k;, y;, 114, it, 24
= canappearatt—1,¢,t+1
o exogenous variables €; at date ¢
e variables have subscript t if they are first known at date £
o New information arrives with the innovations e;.

o i.e. information setis spanned by F; = F(- -+, €3, €2, €1—1,€t)

These conventions are different from ones typically used in optimal control. To check that your
timing is correct, reason about which variables are predetermined. For instance, when producing

yr = ki ;ng, the level of capital cannot be adjusted to the productivity innovation to produce in
period t hence it appears with datet — 1.
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Abstract Representation

Denote by y; the vector of endogenous variables. Denote by e; the vector exogenous variables.

The model can be represented by a function f such that:

Vt By [f(Yt-1,Ys, Yt41,€)] =0

We look for a recursive solution ¢ in the form y; = ¢(y¢—1, €t)

In the RBC model we have:

« endogenous: y; = (kt, q¢, 1ut, 84, 2t)
« exogenous: e; = (€;)

e equations: each equation corresponds to a component of f

Remark: expectations taken on variables at t ort — 1 can be ignored.

Et [kt — (1 — (1 — 6)kt_1) — ’l,t] is simply kt — (1 — (1 — 6)kt_1) — ’l:t
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Steady-state

The deterministic steady-state is a value of endogenous variables, which solve the equations with

Yi—1 = Y+ = Yz—1 an in the absence of shock (i.e. e; = 0).

It satisfies

f(@,9,9,0)=0

For the RBC model, the steady-state can be computed as:

n = 0.33
z=20
’)"k=1/,3—1-|-5

w=(1—a)*exp(z) * (k/n)*
k=n/(ry a)1/1-2)

q = exp(z) * k* xnl™®
i=0xk
c=q—1

which implies x = w/c? /n"
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Coding the RBC Model

Let's code it up

using LabelledArrays
First we need to provide the calibration values and the steady-state values.
In the case of the RBC, it is easier to do both at once.

# parameters
#p = (5...)

Then we define a function representing the model equations

# LabelledVectors are useful here:
# - they behave like namedtuples, and like vectors

f (generic function with 1 method)
function f(v_f, v, v_p, e, p)

end
Check that the steady-state conditions are indeed met.
# 1f they are not, change initial guess and/or model

If the steady-state is not right, but you are sure about the model, you can also look for the steady-

state numerically.

using NLsolve
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Differentiating the Model

To solve the model, we we replace it by a first order approximation. To do so we replace

E: [f(Yyt+1, Y1, Y1-1,€:)] = 0
where the solution is: y; = @(yt—1, €t)
by
E; [Aft+1 + Bjs + Ci—1 + Deg] =0
where

e variable § = y; — yis in deviation to the steady-state
e solution is approximated by §f = GyfJt—1 + Geet
o ey~ Z_/ + Gygt—l + Geet
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The next steps
We still need to:
e compute:
A= £, G5.5.0
B = £,(%,%,,0)
C = f,,.%%7%,0)
D= f.,(4:9,%,0)
o solve the equation in Gy, G

md"""## The next steps

We still need to:

- compute:

$A = fA{\prime}_{y_{t+13}(\overline{y},\overline{y},\overline{y}, 0)$
$B = fA{\prime}_{y_{t}}(\overline{y},\overline{y},\overline{y}, 0)$
$C = fA{\prime}_{y_{t-1}}(\overline{y},\overline{y},\overline{y}, 0)$
$D = fA{\prime}_{e_{t}}(\overline{y},\overline{y},\overline{y}, 0)$

- solve the equation in $G_y, G_e$
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