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Essential numerical tools and
perturbation analysis (�.c)

Optimization
Pablo Winant

African Econometric Society Worskhop 14/12/23

Introduction
Optimization is everywhere in economics:

model an agent's behaviour: what would a rational agent do?
consumer maximizes utility from consumption
�rm maximizes pro�t

an economist tries to solve a model:
�nd prices that clear the market

A Tale of Two Optimization Problems

minimization/maximization. root �nding:

,

O�ten a minimization problem can be reformulated as a root-�nding problem
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Warning:

When using �rst order conditions to minimize a function one must pay attention to the two
caveats:

that the root does not correspond to a local maximum
that the minimum is global (for ) not local

Local/Global Illustration

Optimization tasks come in many �avours

Continuous versus discrete optimization

Constrained and Unconstrained optimization

Stochastic vs Deterministic

Local vs global Algorithms

Math vs practice
The full mathematical treatment will typically assume that  is smooth (  or  depending on
the algorithm).
In practice we o�ten don't know about these properties

we still try and check that we have a local optimal
So: �ngers crossed

A complicated surface

What you need to know
handcode simple algos (Newton, Gradient Descent)

very useful 👍
understand the general principle of the various algorithms to compare them in terms of

robustness
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e��ciency
accuracy

then you can just switch the various options, when you use a library...
root-�nding: Roots.jl (1d) and NLsolve.jl
optimization: Optim.jl
more advanced modeling: JuMP.jl (comparable to GAMS)

Unconstrained Optimization
Minimize  for  given initial guess 
If you have intuitions from the 1d case, they still apply

replace derivatives by gradient, jacobian and hessian
recall that matrix multiplication is not commutative

Some speci�c problems:
update speed can be speci�c to each dimension
saddle-point issues (for minimization)

Quick terminology
Function 

Jacobian:  or ,  matrix such that: 

Gradient: , jacobian when 
Hessian: denoted by  or  when :

In the following explanations,  denotes the supremum norm, but most of the following
explanations also work with other norms.

Newton-Raphson Root-Finding
Algorithm:

start with 
compute 
stop if  or 

https://github.com/JuliaMath/Roots.jl
https://github.com/JuliaNLSolvers/NLsolve.jl
https://github.com/JuliaNLSolvers/Optim.jl
https://github.com/jump-dev/JuMP.jl


12/14/23, 9:21 PM day_1_3_maximization

localhost:1234/edit?id=f411defc-9aa7-11ee-3a8a-1df58385cb62# 4/11

Convergence: quadratic

Newton Raphson Illustration

Newton-Raphson Root Finding (�)
what matters is the computation of the step 
don't compute 

it takes less operations to compute  in  than  then 
in Julia: X = A \ Y

strategies to improve convergence:
dampening: 
backtracking: choose  such that <
linesearch: choose  so that  is minimal

Exercise �: Simple Newton Algorithm
Choose a two dimensional function with a zero.

Write a method zero_newton(f::Function, x0::Vector{Float64})  which computes the zero of a
vector valued function f  starting from initial point x0 .

Change the signature of the function zero_newton(f::Function, x0::Vector{Float64},
backtracking=true)  and implement backtracking in each iteration.

ϕ (generic function with 1 method)

([-0.45, -0.7], 2×2 Matrix{Float64}:
0.4 1.0

)

zero_newton (generic function with 1 method)

function ϕ(x::Vector{Float64})
y = [x[1]^2 + x[2]^2 - 0.5 , x[1] + x[2] - 1  ]
dy = [ (2*x[1]) 1.0 ; 1.0 (2*x[1]) ]
return (y, dy)

end

1
2
3
4
5

ϕ([0.2, 0.1])1

# what are the zeros of ϕ?1

function zero_newton(f::Function, x0::Vector{Float64})
end

1
2
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Multidimensional Gradient Descent
Minimize  for  given 
Algorithm

start with 
set 
stop if  or 

Comments:
lots of variants
automatic di�ferentiation so�tware makes gradient easy to compute
convergence is typically linear

Gradient Descent Illustration

Multidimensional Newton Minimization
Algorithm:

start with 
compute 
stop if  or 

Convergence: quadratic

Newton Illustration

Practical Problems

hessian  is hard to compute e��ciently
rather unstable

There are ways to approximate the hessian without a full evaluation

quasi-newton
gauss-newton
Levenberg-Marquardt
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Exercise �: Pro�t optimization by a monopolist
A monopolist produces quantity  of goods X at price . Its cost function is 

The consumer's demand for price  is  (constant elasticity of demand to price).

Write down the pro�t function of the monopolist and �nd the optimal production (if any)
numerically. You can use the Optim.jl  library.

Hint

profits (generic function with 1 method)

-0.48579719608041594

[-0.485797, -0.396414, -0.3292, -0.27172, -0.220625, -0.174282, -0.131716, -0.0922769, -0.

begin
p(q) = -2log(q/2)
c(q) = 0.5 + q*(1-q*exp(-q))
R(q) = q*p(q)
profits(q) = R(q) - c(q)

end

1
2
3
4
5
6

@bind q_sl Slider(0.001:0.01:  0.5)1

profits(q_sl)1

begin
qvec = 0.001:0.01:  1.0
πvec = profits.(qvec)

end

1
2
3
4

using Plots1
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res * Status: success

* Candidate solution
   Final objective value:     -5.448588e-01

* Found with
   Algorithm:     Nelder-Mead

* Convergence measures
   √(Σ(yᵢ-ȳ)²)/n ≤ 1.0e-08

* Work counters
   Seconds run:   0  (vs limit Inf)
   Iterations:    7
   f(x) calls:    17

 = 

min0 [0.561865] = 

  Profit is maximum for q=[0.561865234375]Profit is maximum for q=[0.561865234375]

plot(qvec, πvec)1

using Optim1

res = optimize(u->-profits(u[1]) , [0.25])1

min0 = res.minimizer1

println("Profit is maximum for q=$min0")1
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Dealing with constraints
Consider the optimization problem:

subject to to the constraint 

where  is concave, ,  and  are given.

This is a constrained maximization problem. Some optimization algorithms are equipped to deal with
the constraint.

One can also reformulate the maximization problem as a �rst order system.

Karush-Kuhn-Tucker conditions
If  is optimal there exists  such that:

maximizes lagrangian 

The three latest conditions are called "complementarity" or "slackness" conditions
they are equivalent to 
we denote 

Lagrange multiplier  can be interpreted as the welfare gain of relaxing the constraint.

Karush-Kuhn-Tucker conditions
We can get �rst order conditions that factor in the constraints:
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It is now a nonlinear system of three equations in three unknowns with complementarities
a.k.a. Nonlinear Complementarity Problem (NCP)
there are speci�c solution methods to deal with it
and commercial solvers (knitro, PATH)
but one can o�ten use a simple, easy trick...

Smooth method
Consider the Fisher-Burmeister function 

It is in�nitely di�ferentiable, except at 
Show that 

A�ter substitution in the original system, we obtain:

And we can use our preferred nonlinear solver

Tip

Fun fact: the formulation with a  is nonsmooth but also works quite o�ten

Exercise �: Constrained Optimization
Consider the function .

Use Optim.jl to maximize  without constraint. Check you understand diagnostic informations
returned by the optimizer.

Now, consider the constraint  and maximize  under this new constraint.

Enter cell code...1

Enter cell code...1
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Reformulate the problem as a root �nding problem with lagrangians. Write the complementarity
conditions.

Solve using NLSolve.jl

Adapt the zero_newton  function from before to incorporate bound informations, and use the
Fisher-Burmeister transform to solve the system.
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