
12/14/23, 9:21 PM day_1_3_maximization

localhost:1234/edit?id=f411defc-9aa7-11ee-3a8a-1df58385cb62# 1/11

Essential numerical tools and
perturbation analysis (�.c)

Optimization
Pablo Winant

African Econometric Society Worskhop 14/12/23

Introduction
Optimization is everywhere in economics:

model an agent's behaviour: what would a rational agent do?
consumer maximizes utility from consumption
�rm maximizes pro�t

an economist tries to solve a model:
�nd prices that clear the market

A Tale of Two Optimization Problems

minimization/maximization. root �nding:

,

O�ten a minimization problem can be reformulated as a root-�nding problem

12/14/23, 9:21 PM day_1_3_maximization

localhost:1234/edit?id=f411defc-9aa7-11ee-3a8a-1df58385cb62# 2/11

Warning:

When using �rst order conditions to minimize a function one must pay attention to the two
caveats:

that the root does not correspond to a local maximum
that the minimum is global (for) not local

Local/Global Illustration

Optimization tasks come in many �avours

Continuous versus discrete optimization

Constrained and Unconstrained optimization

Stochastic vs Deterministic

Local vs global Algorithms

Math vs practice
The full mathematical treatment will typically assume that is smooth (or depending on
the algorithm).
In practice we o�ten don't know about these properties

we still try and check that we have a local optimal
So: �ngers crossed

A complicated surface

What you need to know
handcode simple algos (Newton, Gradient Descent)

very useful 👍
understand the general principle of the various algorithms to compare them in terms of

robustness

12/14/23, 9:21 PM day_1_3_maximization

localhost:1234/edit?id=f411defc-9aa7-11ee-3a8a-1df58385cb62# 3/11

e��ciency
accuracy

then you can just switch the various options, when you use a library...
root-�nding: Roots.jl (1d) and NLsolve.jl
optimization: Optim.jl
more advanced modeling: JuMP.jl (comparable to GAMS)

Unconstrained Optimization
Minimize for given initial guess
If you have intuitions from the 1d case, they still apply

replace derivatives by gradient, jacobian and hessian
recall that matrix multiplication is not commutative

Some speci�c problems:
update speed can be speci�c to each dimension
saddle-point issues (for minimization)

Quick terminology
Function

Jacobian: or , matrix such that:

Gradient: , jacobian when
Hessian: denoted by or when :

In the following explanations, denotes the supremum norm, but most of the following
explanations also work with other norms.

Newton-Raphson Root-Finding
Algorithm:

start with
compute
stop if or

https://github.com/JuliaMath/Roots.jl
https://github.com/JuliaNLSolvers/NLsolve.jl
https://github.com/JuliaNLSolvers/Optim.jl
https://github.com/jump-dev/JuMP.jl

12/14/23, 9:21 PM day_1_3_maximization

localhost:1234/edit?id=f411defc-9aa7-11ee-3a8a-1df58385cb62# 4/11

Convergence: quadratic

Newton Raphson Illustration

Newton-Raphson Root Finding (�)
what matters is the computation of the step
don't compute

it takes less operations to compute in than then
in Julia: X = A \ Y

strategies to improve convergence:
dampening:
backtracking: choose such that <
linesearch: choose so that is minimal

Exercise �: Simple Newton Algorithm
Choose a two dimensional function with a zero.

Write a method zero_newton(f::Function, x0::Vector{Float64}) which computes the zero of a
vector valued function f starting from initial point x0 .

Change the signature of the function zero_newton(f::Function, x0::Vector{Float64},
backtracking=true) and implement backtracking in each iteration.

ϕ (generic function with 1 method)

([-0.45, -0.7], 2×2 Matrix{Float64}:
0.4 1.0

)

zero_newton (generic function with 1 method)

function ϕ(x::Vector{Float64})
y = [x[1]^2 + x[2]^2 - 0.5 , x[1] + x[2] - 1]
dy = [(2*x[1]) 1.0 ; 1.0 (2*x[1])]
return (y, dy)

end

1
2
3
4
5

ϕ([0.2, 0.1])1

what are the zeros of ϕ?1

function zero_newton(f::Function, x0::Vector{Float64})
end

1
2

12/14/23, 9:21 PM day_1_3_maximization

localhost:1234/edit?id=f411defc-9aa7-11ee-3a8a-1df58385cb62# 5/11

Multidimensional Gradient Descent
Minimize for given
Algorithm

start with
set
stop if or

Comments:
lots of variants
automatic di�ferentiation so�tware makes gradient easy to compute
convergence is typically linear

Gradient Descent Illustration

Multidimensional Newton Minimization
Algorithm:

start with
compute
stop if or

Convergence: quadratic

Newton Illustration

Practical Problems

hessian is hard to compute e��ciently
rather unstable

There are ways to approximate the hessian without a full evaluation

quasi-newton
gauss-newton
Levenberg-Marquardt

12/14/23, 9:21 PM day_1_3_maximization

localhost:1234/edit?id=f411defc-9aa7-11ee-3a8a-1df58385cb62# 6/11

Exercise �: Pro�t optimization by a monopolist
A monopolist produces quantity of goods X at price . Its cost function is

The consumer's demand for price is (constant elasticity of demand to price).

Write down the pro�t function of the monopolist and �nd the optimal production (if any)
numerically. You can use the Optim.jl library.

Hint

profits (generic function with 1 method)

-0.48579719608041594

[-0.485797, -0.396414, -0.3292, -0.27172, -0.220625, -0.174282, -0.131716, -0.0922769, -0.

begin
p(q) = -2log(q/2)
c(q) = 0.5 + q*(1-q*exp(-q))
R(q) = q*p(q)
profits(q) = R(q) - c(q)

end

1
2
3
4
5
6

@bind q_sl Slider(0.001:0.01: 0.5)1

profits(q_sl)1

begin
qvec = 0.001:0.01: 1.0
πvec = profits.(qvec)

end

1
2
3
4

using Plots1

12/14/23, 9:21 PM day_1_3_maximization

localhost:1234/edit?id=f411defc-9aa7-11ee-3a8a-1df58385cb62# 7/11

res * Status: success

* Candidate solution
 Final objective value: -5.448588e-01

* Found with
 Algorithm: Nelder-Mead

* Convergence measures
 √(Σ(yᵢ-ȳ)²)/n ≤ 1.0e-08

* Work counters
 Seconds run: 0 (vs limit Inf)
 Iterations: 7
 f(x) calls: 17

 =

min0 [0.561865] =

 Profit is maximum for q=[0.561865234375]Profit is maximum for q=[0.561865234375]

plot(qvec, πvec)1

using Optim1

res = optimize(u->-profits(u[1]) , [0.25])1

min0 = res.minimizer1

println("Profit is maximum for q=$min0")1

12/14/23, 9:21 PM day_1_3_maximization

localhost:1234/edit?id=f411defc-9aa7-11ee-3a8a-1df58385cb62# 8/11

Dealing with constraints
Consider the optimization problem:

subject to to the constraint

where is concave, , and are given.

This is a constrained maximization problem. Some optimization algorithms are equipped to deal with
the constraint.

One can also reformulate the maximization problem as a �rst order system.

Karush-Kuhn-Tucker conditions
If is optimal there exists such that:

maximizes lagrangian

The three latest conditions are called "complementarity" or "slackness" conditions
they are equivalent to
we denote

Lagrange multiplier can be interpreted as the welfare gain of relaxing the constraint.

Karush-Kuhn-Tucker conditions
We can get �rst order conditions that factor in the constraints:

12/14/23, 9:21 PM day_1_3_maximization

localhost:1234/edit?id=f411defc-9aa7-11ee-3a8a-1df58385cb62# 9/11

It is now a nonlinear system of three equations in three unknowns with complementarities
a.k.a. Nonlinear Complementarity Problem (NCP)
there are speci�c solution methods to deal with it
and commercial solvers (knitro, PATH)
but one can o�ten use a simple, easy trick...

Smooth method
Consider the Fisher-Burmeister function

It is in�nitely di�ferentiable, except at
Show that

A�ter substitution in the original system, we obtain:

And we can use our preferred nonlinear solver

Tip

Fun fact: the formulation with a is nonsmooth but also works quite o�ten

Exercise �: Constrained Optimization
Consider the function .

Use Optim.jl to maximize without constraint. Check you understand diagnostic informations
returned by the optimizer.

Now, consider the constraint and maximize under this new constraint.

Enter cell code...1

Enter cell code...1

12/14/23, 9:21 PM day_1_3_maximization

localhost:1234/edit?id=f411defc-9aa7-11ee-3a8a-1df58385cb62# 10/11

Reformulate the problem as a root �nding problem with lagrangians. Write the complementarity
conditions.

Solve using NLSolve.jl

Adapt the zero_newton function from before to incorporate bound informations, and use the
Fisher-Burmeister transform to solve the system.

Essential numerical tools and perturbation analysis (1.c)
Optimization
Introduction
A Tale of Two Optimization Problems
Optimization tasks come in many �lavours
Math vs practice
What you need to know
Unconstrained Optimization
Quick terminology
Newton-Raphson Root-Finding
Newton-Raphson Root Finding (2)
Exercise 1: Simple Newton Algorithm
Multidimensional Gradient Descent
Multidimensional Newton Minimization
Exercise 2: Pro�t optimization by a monopolist
Dealing with constraints
Karush-Kuhn-Tucker conditions
Karush-Kuhn-Tucker conditions
Smooth method
Exercise 3: Constrained Optimization

Enter cell code...1

Enter cell code...1

Table of Contents

12/14/23, 9:21 PM day_1_3_maximization

localhost:1234/edit?id=f411defc-9aa7-11ee-3a8a-1df58385cb62# 11/11

