Solving DSGE models
 Macro II - Fluctuations - ENSAE, 2023-2024

Pablo Winant

2024-03-20

Introduction

What is the main specificity of economic modeling? In (macro)economics, we model the behaviour of economic agents by specifying:
$>$ their objective

$$
\max _{c_{t}} E_{t} \sum_{s \geq t} \beta^{s} U\left(c_{s}\right)
$$

$$
\max \pi_{t}
$$

their constraints (budget constraint, econ. environment...)

What is the main specificity of economic modeling? In (macro)economics, we model the behaviour of economic agents by specifying:
$>$ their objective

$$
\max _{c_{t}} E_{t} \sum_{s \geq t} \beta^{s} U\left(c_{s}\right)
$$

$$
\max \pi_{t}
$$

their constraints (budget constraint, econ. environment...)
This has important implications:
macro models are forward looking

- macro models need to be solved

In many cases, there is not closed form for the solution -> we need numerical techniques

Dynare

- 1996: Michel Juillard created an opensource software to solve DSGE models
- It has been widely adopted:
- early version in Gauss
then Matlab/Octave/Scilab
- latest version in Julia

Figure 1: Michel Juillard

Dynare

- 1996: Michel Juillard created an opensource software to solve DSGE models
- DSGE: Dynamic Stochastic General Equilibrium
- It has been widely adopted:
- early version in Gauss
then Matlab/Octave/Scilab
- latest version in Julia

Figure 1: Michel Juillard

Dynare

- 1996: Michel Juillard created an opensource software to solve DSGE models
- DSGE: Dynamic Stochastic General Equilibrium
$>$ usually solved around a steady-state
- It has been widely adopted:
- early version in Gauss
then Matlab/Octave/Scilab
- latest version in Julia

Figure 1: Michel Juillard

Dynare

- 1996: Michel Juillard created an opensource software to solve DSGE models
- DSGE: Dynamic Stochastic General Equilibrium
$>$ usually solved around a steady-state
- Now about 10 contributors.
- It has been widely adopted:
- early version in Gauss
then Matlab/Octave/Scilab
- latest version in Julia

Figure 1: Michel Juillard

DSGE Models in institutions

Nowadays most DSGE models built in institutions have a Dynare version (IMF/GIMF, EC/Quest, ECB/, NYFed/FRBNY)
they are usually based on the midsize model from Smets \& Wouters (10 equations)

- but have grown up a lot (»100 equations)

DSGE Models in institutions

Nowadays most DSGE models built in institutions have a Dynare version (IMF/GIMF, EC/Quest, ECB/, NYFed/FRBNY)
they are usually based on the midsize model from Smets \& Wouters (10 equations)

- but have grown up a lot (»100 equations)

Institutions (led by researchers) are (slowly) diversifying their model

- Computational General Equilibrium Models
- Agent-based
- Semi-structural models
- Heterogenous Agents Models

Solving a model

Model

A very concise representation of a model

$$
\mathbb{E}_{t}\left[f\left(y_{t+1}, y_{t}, y_{t-1}, \epsilon_{t}\right)\right]=0
$$

The problem:

- $y_{t} \in \mathbb{R}^{n}$: the vector of endogenous variables
> $\epsilon_{t} \in \mathbb{R}^{n_{e}}$: the vector of exogenous variables
- we assume that ϵ_{t} is a zero-mean gaussian process
$>f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}:$ the model equations

The solution:

- g such that

$$
\forall t, y_{t}=g\left(y_{t-1}, \epsilon_{t}\right)
$$

The timing of the equations

- Tip

In dynare the model equations are coded in the model; ... ; end; block.

New information arrives with the innovations ϵ_{t}.
At date t, the information set is spanned by
$\mathcal{F}_{t}=\mathcal{F}\left(\cdots, \epsilon_{t-3}, \epsilon_{t-2}, \epsilon_{t-1}, \epsilon_{t}\right)$
By convention an endogenous variable has a subscript t if it is known first at date t.

Example

The timing of equations

Using Dynare's timing conventions:

- Write the production function in the RBC

Write the law of motion for capital k, with a depreciation rate δ and investment i
when is capital known?
when is investment known?

- Add a multiplicative investment efficiency shock χ_{t}. Assume it is an $A R 1$ driven by innovation η_{t} and autocorrelation ρ_{χ}

Steady-state

The deterministic steady-state satisfies:

$$
f(\bar{y}, \bar{y}, \bar{y}, 0)=0
$$

Often, there is a closed-form solution.
Otherwise, one must resort to a numerical solver to solve

$$
\bar{y} \rightarrow f(\bar{y}, \bar{y}, \bar{y}, 0)
$$

9 Tip
In dynare the steady-state values are provided in the steadystate_model; ... ; end; block. One can check they are correct using the check; statement.
To find numerically the steady-state: steady;

The implicit system

Replacing the solution

$$
y_{t}=g\left(y_{t-1}, \epsilon_{t}\right)
$$

in the system

$$
\mathbb{E}_{t}\left[f\left(y_{t+1}, y_{t}, y_{t-1}, \epsilon_{t}\right)\right]=0
$$

we obtain:

$$
\mathbb{E}_{t}\left[f\left(g\left(g\left(y_{t-1}, \epsilon_{t}\right), \epsilon_{t+1}\right), g\left(y_{t-1}, \epsilon_{t}\right), y_{t-1}, \epsilon_{t}\right)\right]=0
$$

It is an equation defining implicitly the function $g()$

The state-space

$$
\mathbb{E}_{t}\left[f\left(g\left(g\left(y_{t-1}, \epsilon_{t}\right), \epsilon_{t+1}\right), g\left(y_{t-1}, \epsilon_{t}\right), y_{t-1}, \epsilon_{t}\right)\right]=0
$$

In this expression, y_{t-1}, ϵ_{t} is the state-space.

The state-space

$$
\mathbb{E}_{t}\left[f\left(g\left(g\left(y_{t-1}, \epsilon_{t}\right), \epsilon_{t+1}\right), g\left(y_{t-1}, \epsilon_{t}\right), y_{t-1}, \epsilon_{t}\right)\right]=0
$$

In this expression, y_{t-1}, ϵ_{t} is the state-space.
Dropping the time subscripts, the equation must be satisfied for any realization of (y, ϵ)

$$
\forall(y, \epsilon) \Phi(g)(y, \epsilon)=\mathbb{E}_{\epsilon^{\prime}}\left[f\left(g\left(g(y, \epsilon), \epsilon^{\prime}\right), g(y, \epsilon), y, \epsilon\right)\right]=0
$$

It is a functional equation $\Phi(g)=0$

Expected shocks

First order approximation:
$>$ Assume $\left|y_{t}-\bar{y}\right| \ll 1,|\epsilon| \ll 1,\left|\epsilon^{\prime}\right| \ll 1$
Perform a Taylor expansion with respect to future shock:

$$
\begin{array}{r}
\mathbb{E}_{\epsilon^{\prime}}\left[f\left(g\left(g(y, \epsilon), \epsilon^{\prime}\right), g(y, \epsilon), y, \epsilon\right)\right] \\
=\quad \mathbb{E}_{\epsilon^{\prime}}[f(g(g(y, \epsilon), 0), g(y, \epsilon), y, \epsilon)] \\
\approx \quad+\mathbb{E}_{\epsilon^{\prime}}\left[f_{y_{t+1}}^{\prime}(g(g(y, \epsilon), 0), g(y, \epsilon), y, \epsilon) g_{\epsilon}^{\prime} \epsilon^{\prime}\right]+o\left(\epsilon^{\prime}\right) \\
\approx \quad f(g(g(y, \epsilon), 0), g(y, \epsilon), y, \epsilon) \tag{4}
\end{array}
$$

Expected shocks

First order approximation:
$>$ Assume $\left|y_{t}-\bar{y}\right| \ll 1,|\epsilon| \ll 1,\left|\epsilon^{\prime}\right| \ll 1$
Perform a Taylor expansion with respect to future shock:

$$
\begin{array}{r}
\mathbb{E}_{\epsilon^{\prime}}\left[f\left(g\left(g(y, \epsilon), \epsilon^{\prime}\right), g(y, \epsilon), y, \epsilon\right)\right] \\
=\quad \mathbb{E}_{\epsilon^{\prime}}[f(g(g(y, \epsilon), 0), g(y, \epsilon), y, \epsilon)] \\
\approx \quad+\mathbb{E}_{\epsilon^{\prime}}\left[f_{y_{t+1}}^{\prime}(g(g(y, \epsilon), 0), g(y, \epsilon), y, \epsilon) g_{\epsilon}^{\prime} \epsilon^{\prime}\right]+o\left(\epsilon^{\prime}\right) \\
\approx \quad f(g(g(y, \epsilon), 0), g(y, \epsilon), y, \epsilon) \tag{4}
\end{array}
$$

This uses the fact that $\mathbb{E}\left[\epsilon^{\prime}\right]=0$.
At first order, expected shocks play no role.
To capture precautionary behaviour (like risk premia), we would need to increase the approximation order.

First order perturbation

We are left with the system:

$$
F(y, \epsilon)=f(g(g(y, \epsilon), 0), g(y, \epsilon), y, \epsilon)=0
$$

We can now use a variant of the implicit function theorem to recover a first approximation of g as:

$$
g(y, \epsilon)=\bar{y}+g_{y}^{\prime}(y-\bar{y})+g_{e}^{\prime} \epsilon_{t}
$$

First order perturbation

We are left with the system:

$$
F(y, \epsilon)=f(g(g(y, \epsilon), 0), g(y, \epsilon), y, \epsilon)=0
$$

We can now use a variant of the implicit function theorem to recover a first approximation of g as:

$$
g(y, \epsilon)=\bar{y}+g_{y}^{\prime}(y-\bar{y})+g_{e}^{\prime} \epsilon_{t}
$$

We can obtain the unknown quantities g_{y}^{\prime}, and g_{e}^{\prime} using the method of undeterminate coefficients:

Plug the first approximation into the system and write the conditions

$$
\begin{aligned}
& F_{y}^{\prime}(\bar{y}, 0)=0 \\
& F_{\epsilon}^{\prime}(\bar{y}, 0)=0
\end{aligned}
$$

Computing g_{y}^{\prime}

Recall the system:

$$
F(y, \epsilon)=f(g(g(y, 0), \epsilon), g(y, \epsilon), y, \epsilon)=0
$$

We have

$$
F_{y}^{\prime}(\bar{y}, 0)=f_{y_{t+1}}^{\prime} g_{y}^{\prime} g_{y}^{\prime}+f_{y_{t}}^{\prime} g_{y}^{\prime}+f_{y_{t-1}}^{\prime}=0
$$

Computing g_{y}^{\prime}

Recall the system:

$$
F(y, \epsilon)=f(g(g(y, 0), \epsilon), g(y, \epsilon), y, \epsilon)=0
$$

We have

$$
F_{y}^{\prime}(\bar{y}, 0)=f_{y_{t+1}}^{\prime} g_{y}^{\prime} g_{y}^{\prime}+f_{y_{t}}^{\prime} g_{y}^{\prime}+f_{y_{t-1}}^{\prime}=0
$$

This is a specific Riccatti equation

$$
A X^{2}+B X+C
$$

where A, B, C and $X=g_{y}^{\prime}$ are square matrices $\in \mathbb{R}^{n} \times \mathbb{R}^{n}$

First Order Deterministic Model

Let's pause a minute to observe the first order deterministic model:

$$
A X^{2}+B X+C
$$

From our intuition in dimension 1, we know there must be multiple solutions
how do we find them?
D how do we select the right ones?
I the absence of shocks the dynamics of the model are given by

$$
y_{t}=X y_{t-1}
$$

What is the condition for the model to be stationary?

First Order Deterministic Model

Let's pause a minute to observe the first order deterministic model:

$$
A X^{2}+B X+C
$$

From our intuition in dimension 1, we know there must be multiple solutions
how do we find them?
D how do we select the right ones?
I the absence of shocks the dynamics of the model are given by

$$
y_{t}=X y_{t-1}
$$

What is the condition for the model to be stationary?
-> the biggest eigenvalue of X should be smaller than 1

Multiplicity of solution

It is possible to show that the system is associated with $2 n$ generalized eigenvalues:

$$
\left|\lambda_{1}\right| \leq \cdots \leq\left|\lambda_{2 n}\right|
$$

For each choice C of n eigenvalues $(|C|=n)$, a specific recursive solution X_{C} can be constructed. It has eigenvalues C.

Multiplicity of solution

It is possible to show that the system is associated with $2 n$ generalized eigenvalues:

$$
\left|\lambda_{1}\right| \leq \cdots \leq\left|\lambda_{2 n}\right|
$$

For each choice C of n eigenvalues $(|C|=n)$, a specific recursive solution X_{C} can be constructed. It has eigenvalues C.

This yields at least $\binom{2 n}{n}$ different combinations.

Multiplicity of solution

It is possible to show that the system is associated with $2 n$ generalized eigenvalues:

$$
\left|\lambda_{1}\right| \leq \cdots \leq\left|\lambda_{2 n}\right|
$$

For each choice C of n eigenvalues $(|C|=n)$, a specific recursive solution X_{C} can be constructed. It has eigenvalues C.

This yields at least $\binom{2 n}{n}$ different combinations.
A model is well defined when there is exactly one solution that is non divergent.

This is equivalent to:

$$
\left|\lambda_{1}\right| \leq \cdots \leq\left|\lambda_{n}\right| \leq 1<\left|\lambda_{n+1}\right| \leq \cdots \leq\left|\lambda_{2 n}\right|
$$

Example 1

Forward looking inflation:

$$
\pi_{t}=\alpha \pi_{t+1}
$$

with $\alpha<1$.
Is it well defined?

Example 1

Forward looking inflation:

$$
\pi_{t}=\alpha \pi_{t+1}
$$

with $\alpha<1$.
Is it well defined?
We can rewrite the system as:

$$
\alpha \pi_{t+1}-\pi_{t}+0 \pi_{t-1}=0
$$

or

$$
\pi_{t+1}-\left(\frac{1}{\alpha}+0\right) \pi_{t}+\left(\frac{1}{\alpha} 0\right) \pi_{t-1}=0
$$

Example 1

Forward looking inflation:

$$
\pi_{t}=\alpha \pi_{t+1}
$$

with $\alpha<1$.
Is it well defined?
We can rewrite the system as:

$$
\alpha \pi_{t+1}-\pi_{t}+0 \pi_{t-1}=0
$$

or

$$
\pi_{t+1}-\left(\frac{1}{\alpha}+0\right) \pi_{t}+\left(\frac{1}{\alpha} 0\right) \pi_{t-1}=0
$$

The generalized eigenvalues are $0 \leq 1<\frac{1}{\alpha}$.

Example 1

Forward looking inflation:

$$
\pi_{t}=\alpha \pi_{t+1}
$$

with $\alpha<1$.
Is it well defined?
We can rewrite the system as:

$$
\alpha \pi_{t+1}-\pi_{t}+0 \pi_{t-1}=0
$$

or

$$
\pi_{t+1}-\left(\frac{1}{\alpha}+0\right) \pi_{t}+\left(\frac{1}{\alpha} 0\right) \pi_{t-1}=0
$$

The generalized eigenvalues are $0 \leq 1<\frac{1}{\alpha}$.
The uniaue stable solution is $\pi_{t}=0 \pi_{t}$,

Example 2

Debt accumulation equation by a rational agent:

$$
b_{t+1}-\left(1+\frac{1}{\beta}\right) b_{t}+\frac{1}{\beta} b_{t-1}=0
$$

Is it well-defined?

Example 2

Debt accumulation equation by a rational agent:

$$
b_{t+1}-\left(1+\frac{1}{\beta}\right) b_{t}+\frac{1}{\beta} b_{t-1}=0
$$

Is it well-defined?
Two generalized eigenvalues $\lambda_{1}=1<\lambda_{2}=\frac{1}{\beta}$

Example 2

Debt accumulation equation by a rational agent:

$$
b_{t+1}-\left(1+\frac{1}{\beta}\right) b_{t}+\frac{1}{\beta} b_{t-1}=0
$$

Is it well-defined?
Two generalized eigenvalues $\lambda_{1}=1<\lambda_{2}=\frac{1}{\beta}$
The unique non-diverging solution is $b_{t}=b_{t-1}$.
it is a unit-root: any initial deviation in b_{t-1} has persistent effects

Example 3

Productivity process:

$$
z_{t}=\rho z_{t-1}
$$

with $\rho<1$: well defined

Example 3

Productivity process:

$$
z_{t}=\rho z_{t-1}
$$

with $\rho<1$: well defined
In that case there is a hidden infinite eigenvalue ∞ associated to z_{t+1}.

Example 3

Productivity process:

$$
z_{t}=\rho z_{t-1}
$$

with $\rho<1$: well defined
In that case there is a hidden infinite eigenvalue ∞ associated to
z_{t+1}.
To see why consider the system associated with eigenvalues m and ρ :

$$
\begin{aligned}
& z_{t+1}-(m+\rho) z_{t}+m \rho z_{t-1}=0 \\
& \frac{1}{m} z_{t+1}-\left(1+\frac{\rho}{m}\right) z_{t}+\rho z_{t-1}=0
\end{aligned}
$$

Which corresponds to the initial model when $m=\infty$

Example 3

Productivity process:

$$
z_{t}=\rho z_{t-1}
$$

with $\rho<1$: well defined
In that case there is a hidden infinite eigenvalue ∞ associated to z_{t+1}.
To see why consider the system associated with eigenvalues m and ρ :

$$
\begin{aligned}
& z_{t+1}-(m+\rho) z_{t}+m \rho z_{t-1}=0 \\
& \frac{1}{m} z_{t+1}-\left(1+\frac{\rho}{m}\right) z_{t}+\rho z_{t-1}=0
\end{aligned}
$$

Which corresponds to the initial model when $m=\infty$
The generalized eigenvalues are $\lambda_{1}=\rho \leq 1<\lambda_{2}=\infty$
More generally, any variable that does not appear in $t+1$ creates one infinite generalized eigenvalue.

A criterium for well-definedness

Looking again at the list of eigenvalues we set aside the infinite ones.

The model is well specified iff we can sort the eigenvalues as:

$$
\left|\lambda_{1}\right| \leq \cdots \leq\left|\lambda_{n}\right| \leq 1<\left|\lambda_{n+1}\right| \leq \cdots\left|\lambda_{n+k}\right| \leq \underbrace{\left|\lambda_{n+k+1}\right| \cdots \leq\left|\lambda_{2 n}\right|}_{\text {infinite eigenvalues }}
$$

i Blanchard-Kahn criterium
The model satisfies the Blanchard-Kahn criterium if the number of eigenvalues greater than one, is exactly equal to the number of variables appearing in $t+1$.
In that case the model is well-defined.

Computing the solution

There are several classical methods to compute the solution to the algebraic Riccatti equation:

$$
A X^{2}+B X+C=0
$$

> qz decomposition
traditionnally used in the DSGE literature since Chris Sims

- a little bit unintuitive
- cyclic reduction
- new default in dynare, more adequate for big models
$>$ linear time iteration of @sec:linear_time_iteration
- conceptually very simple

Computing g_{e}^{\prime}

Now we have g_{y}^{\prime}, how do we get g_{e}^{\prime} ?
Recall:

$$
F(y, \epsilon)=f(g(g(y, \epsilon), 0), g(y, \epsilon), y, \epsilon)=0
$$

We have

$$
F_{e}^{\prime}(\bar{y}, 0)=f_{y_{t+1}}^{\prime} g_{y}^{\prime} g_{e}^{\prime}+f_{y_{t}}^{\prime} g_{e}^{\prime}+f_{\epsilon_{t}}^{\prime}=0
$$

Now this is easy:

$$
g_{e}^{\prime}=-\left(f_{y_{t+1}}^{\prime} g_{y}^{\prime}+f_{y_{t}}^{\prime}\right)^{-1} f_{\epsilon_{t}}^{\prime}=0
$$

The model solution

The result of the model solution:

$$
y_{t}=g_{y} y_{t-1}+g_{e} \epsilon_{t}
$$

It is an AR1, driven by exogenous shock ϵ_{t}.

The model solution

The result of the model solution:

$$
y_{t}=g_{y} y_{t-1}+g_{e} \epsilon_{t}
$$

It is an AR1, driven by exogenous shock ϵ_{t}.
Because it is a well known structure, one can investigate the model with

- impulse response functions
stochastic simulations

The model solution

The result of the model solution:

$$
y_{t}=g_{y} y_{t-1}+g_{e} \epsilon_{t}
$$

It is an AR1, driven by exogenous shock ϵ_{t}.
Because it is a well known structure, one can investigate the model with

- impulse response functions
stochastic simulations
Then to compare the model to the data we compute
- implied moments:
- covariances, autocorrelation
- likelihood

Optimizing the fit to the data is called model estimation

Conclusion

What can you do with the solution

The solution of a model found by Dynare has an especially simple form: an AR1

- $y_{t}=X y_{t-1}+Y \epsilon_{t}$
where the covariances Σ of ϵ_{t} can be chosen by the modeler

What can you do with the solution

The solution of a model found by Dynare has an especially simple form: an AR1
$>y_{t}=X y_{t-1}+Y \epsilon_{t}$
where the covariances Σ of ϵ_{t} can be chosen by the modeler With this solution we can (cf next TD)
compute (conditional and unconditional) moments
\rightarrow perform stochastic simulations, impulse response function

What can you do with the solution

The solution of a model found by Dynare has an especially simple form: an AR1
$>y_{t}=X y_{t-1}+Y \epsilon_{t}$
where the covariances Σ of ϵ_{t} can be chosen by the modeler With this solution we can (cf next TD)
compute (conditional and unconditional) moments
\rightarrow perform stochastic simulations, impulse response function

Going Further

Taking the model to the data with Dynare

- "estimate" the model: compute the likelihood of a solution and maximize it by choosing the right parameters
"identify" shocks in the data
Other functions
- higher order approximation
(noninear) perfect foresight simulations
- ramsey plan
\rightarrow discretionary policy
$>$...

Coming Next

Many models

Appendix: Linear Time Iteration

Linear Time Iteration

Recall the system to solve:

$$
F(y, \epsilon)=f(g(g(y, \epsilon), 0), g(y, \epsilon), y, \epsilon)=0
$$

but now assume the decision rules today and tomorrow are different:
today: $y_{t}=g\left(y_{t-1}, \epsilon_{t}\right)=\bar{y}+X y_{t-1}+g_{y} \epsilon_{t}$
$>$ tomorrow: $y_{t+1}=\tilde{g}\left(y_{t}, \epsilon_{t+1}\right)=\bar{y}+\tilde{X} y_{t-1}+\tilde{g}_{y} \epsilon_{t}$
Then the Ricatti equation is written:

$$
A \tilde{X} X+B X+C=0
$$

Linear Time Iteration (2)

The linear time iteration algorithm consists in solving the decision rule X today as a function of decision rule tomorrow \tilde{X}.

This corresponds to the simple formula:

$$
X=-(A \tilde{X}+B)^{-1} C
$$

And the full algorithm can be described as:
\checkmark choose X_{0}
\checkmark for any X_{n}, compute $X_{n+1}=T\left(X_{n}\right)=-\left(A X_{n}+B\right)^{-1} C$

- repeat until convergence

Linear Time Iteration (3)

It can be shown that, starting from a random initial guess, the linear time-iteration algorithm converges to the solution X with the smallest modulus:

$$
\underbrace{\left|\lambda_{1}\right| \leq \cdots \leq\left|\lambda_{n}\right|}_{\text {Selected eigenvalues }} \leq\left|\lambda_{n+1}\right| \cdots \leq\left|\lambda_{2 n}\right|
$$

In other words, it finds the right solution when the model is well specified.

How do you check it is well specified?
> λ_{n} is the biggest eigenvalue of solution X
$>$ what about λ_{n+1} ?

- $\frac{1}{\lambda_{n+1}}$ is the biggest eigenvalue of $(A X+B)^{-1} A$

Linear Time Iteration (4)

Define

$$
M(\lambda)=A \lambda^{2}+B \lambda+C
$$

For any solution $X, M(\lambda)$ can be factorized as: ${ }^{1}$

$$
M(\lambda)=(\lambda A+A X+B)(\lambda I-X)
$$

and

$$
\operatorname{det}(M(\lambda))=\underbrace{\operatorname{det}(\lambda A+A X+B)}_{Q(\lambda)} \operatorname{det}(\lambda I-X)
$$

By construction $Q(\lambda)$ is a polynomial whose roots are those that are not selected by the solution i.e. $\Lambda \quad S p(X)$.
${ }^{1}$ Special case of Bezout theorem. Easy to check in that case

Linear Time Iteration (5)

For $\lambda \neq 0$ we have:

$$
\begin{gathered}
\lambda \in S p\left((A X+B)^{-1} A\right) \\
\left.\Leftrightarrow \operatorname{det}\left((A X+B)^{-1}\right) A-I \lambda\right)=0 \\
\Leftrightarrow \operatorname{det}\left(\frac{1}{\lambda} A-I(A X+B)\right)=0 \\
\Leftrightarrow Q\left(\frac{1}{\lambda}\right)=0 \\
\Leftrightarrow \frac{1}{\lambda} \in G \quad S p(X)
\end{gathered}
$$

In words, $(A X+B)^{-1}$ contains all the eigenvalues that have been rejected by the selection of X.

In particular, $\left.\rho\left((A X+B)^{-1}\right) A\right)=1 / \min (G \quad S p(X))$

