
Solving DSGE models
Macro II - Fluctuations - ENSAE, 2024-2025

Pablo Winant

2025-03-12

Introduction

What is the main specificity of economic modeling?
In (macro)economics, we model the behaviour of
economic agents by specifying:

▶ their objective

max
𝑐𝑡

𝐸𝑡 ∑
𝑠≥𝑡

𝛽𝑠𝑈(𝑐𝑠)

max 𝜋𝑡

⋯
▶ their constraints (budget constraint, econ.

environment…)

This has important implications:
▶ macro models are forward looking

▶ rely on expectations
▶ macro models need to be solved

In many cases, there is no closed form for the solution -> we need
numerical techniques

What is the main specificity of economic modeling?
In (macro)economics, we model the behaviour of
economic agents by specifying:

▶ their objective

max
𝑐𝑡

𝐸𝑡 ∑
𝑠≥𝑡

𝛽𝑠𝑈(𝑐𝑠)

max 𝜋𝑡

⋯
▶ their constraints (budget constraint, econ.

environment…)
This has important implications:

▶ macro models are forward looking
▶ rely on expectations

▶ macro models need to be solved

In many cases, there is no closed form for the solution -> we need
numerical techniques

Dynare

▶ 1996: Michel Juillard created an
opensource software to solve DSGE
models

▶ DSGE: Dynamic Stochastic
General Equilibrium

▶ usually solved around a
steady-state

▶ Now about 10 contributors.

▶ + power users who have
contributed to the code

▶ It has been widely adopted:
▶ early version in Gauss
▶ then Matlab/Octave/Scilab
▶ latest version in Julia
▶ … and Python (checkout dyno �)

Figure 1: Michel Juillard

https://www.mosphere.fr/ae2e6_models/voici/tree/index.html

Dynare

▶ 1996: Michel Juillard created an
opensource software to solve DSGE
models

▶ DSGE: Dynamic Stochastic
General Equilibrium

▶ usually solved around a
steady-state

▶ Now about 10 contributors.

▶ + power users who have
contributed to the code

▶ It has been widely adopted:
▶ early version in Gauss
▶ then Matlab/Octave/Scilab
▶ latest version in Julia
▶ … and Python (checkout dyno �)

Figure 1: Michel Juillard

https://www.mosphere.fr/ae2e6_models/voici/tree/index.html

Dynare

▶ 1996: Michel Juillard created an
opensource software to solve DSGE
models

▶ DSGE: Dynamic Stochastic
General Equilibrium

▶ usually solved around a
steady-state

▶ Now about 10 contributors.

▶ + power users who have
contributed to the code

▶ It has been widely adopted:
▶ early version in Gauss
▶ then Matlab/Octave/Scilab
▶ latest version in Julia
▶ … and Python (checkout dyno �)

Figure 1: Michel Juillard

https://www.mosphere.fr/ae2e6_models/voici/tree/index.html

Dynare

▶ 1996: Michel Juillard created an
opensource software to solve DSGE
models

▶ DSGE: Dynamic Stochastic
General Equilibrium

▶ usually solved around a
steady-state

▶ Now about 10 contributors.

▶ + power users who have
contributed to the code

▶ It has been widely adopted:
▶ early version in Gauss
▶ then Matlab/Octave/Scilab
▶ latest version in Julia
▶ … and Python (checkout dyno �)

Figure 1: Michel Juillard

https://www.mosphere.fr/ae2e6_models/voici/tree/index.html

Dynare

▶ 1996: Michel Juillard created an
opensource software to solve DSGE
models

▶ DSGE: Dynamic Stochastic
General Equilibrium

▶ usually solved around a
steady-state

▶ Now about 10 contributors.
▶ + power users who have

contributed to the code
▶ It has been widely adopted:

▶ early version in Gauss
▶ then Matlab/Octave/Scilab
▶ latest version in Julia
▶ … and Python (checkout dyno �)

Figure 1: Michel Juillard

https://www.mosphere.fr/ae2e6_models/voici/tree/index.html

DSGE Models in institutions

Nowadays most DSGE models built in institutions have a Dynare
version (IMF/GIMF, EC/Quest, ECB/, NYFed/FRBNY)

▶ they are usually based on the midsize model from Smets &
Wouters (10 equations)

▶ but have grown up a lot (»100 equations)

Institutions, led by researchers are diversifying their model
▶ Semi-Structural Models
▶ Computational General Equilibrium Models
▶ Network Models
▶ Agent-based Models
▶ Heterogenous Agents Models

DSGE Models in institutions

Nowadays most DSGE models built in institutions have a Dynare
version (IMF/GIMF, EC/Quest, ECB/, NYFed/FRBNY)

▶ they are usually based on the midsize model from Smets &
Wouters (10 equations)

▶ but have grown up a lot (»100 equations)

Institutions, led by researchers are diversifying their model
▶ Semi-Structural Models
▶ Computational General Equilibrium Models
▶ Network Models
▶ Agent-based Models
▶ Heterogenous Agents Models

The Plan

Provide a short introduction to DSGE modeling:
▶ How models are solved (today)
▶ Small Open Economy (aka IRBC model)
▶ Heterogeneity
▶ Financial Intermediation

In passing, we’ll discuss some of the trends

Solving a model

Model

A very concise representation of a model

𝔼𝑡 [𝑓(𝑦𝑡+1, 𝑦𝑡, 𝑦𝑡−1, 𝜖𝑡)] = 0

The problem:
▶ 𝑦𝑡 ∈ ℝ𝑛: the vector of

endogenous variables
▶ 𝜖𝑡 ∈ ℝ𝑛𝑒 : the vector of

exogenous variables
▶ we assume that 𝜖𝑡 is a

zero-mean gaussian
process

▶ 𝑓 ∶ ℝ𝑛 → ℝ𝑛: the model
equations

The solution:
▶ 𝑔 such that

∀𝑡, 𝑦𝑡 = 𝑔(𝑦𝑡−1, 𝜖𝑡)

The timing of the equations
Tip

In a dynare modefile the model equations are coded in the
model; ... ; end; block.
Variable 𝑣𝑡 (resp 𝑣𝑡−1, 𝑣𝑡+1) is denoted by v or v(0) (resp
v(-1), v(+1)).

General Timing Convention

New information arrives with the innovations 𝜖𝑡.

At date 𝑡, the information set is spanned by
ℱ𝑡 = ℱ(⋯ , 𝜖𝑡−3, 𝜖𝑡−2, 𝜖𝑡−1, 𝜖𝑡)
By convention an endogenous variable has a subscript 𝑡 if it is
known first at date 𝑡.

Several variable types depending on how they appear in the
model:

▶ jump variable: appear 𝑡 or 𝑡 + 1
▶ predetermined variable: appear in 𝑡 − 1 and 𝑡 (possibly 𝑡 + 1)
▶ static variables: appear in 𝑡 only

▶ can be expressed as a function of other variables

The timing of the equations
Tip

In a dynare modefile the model equations are coded in the
model; ... ; end; block.
Variable 𝑣𝑡 (resp 𝑣𝑡−1, 𝑣𝑡+1) is denoted by v or v(0) (resp
v(-1), v(+1)).

General Timing Convention

New information arrives with the innovations 𝜖𝑡.

At date 𝑡, the information set is spanned by
ℱ𝑡 = ℱ(⋯ , 𝜖𝑡−3, 𝜖𝑡−2, 𝜖𝑡−1, 𝜖𝑡)
By convention an endogenous variable has a subscript 𝑡 if it is
known first at date 𝑡.
Several variable types depending on how they appear in the
model:

▶ jump variable: appear 𝑡 or 𝑡 + 1
▶ predetermined variable: appear in 𝑡 − 1 and 𝑡 (possibly 𝑡 + 1)
▶ static variables: appear in 𝑡 only

▶ can be expressed as a function of other variables

The timing of equations

Example
Using Dynare’s timing conventions:

▶ Write the production function in the RBC
▶ Write the law of motion for capital 𝑘, with a depreciation rate

𝛿 and investment 𝑖
▶ when is capital known?
▶ when is investment known?

▶ Add a multiplicative investment efficiency shock 𝜒𝑡. Assume
it is an 𝐴𝑅1 driven by innovation 𝜂𝑡 and autocorrelation 𝜌𝜒

▶ how do you write the law of motion for capital?

Steady-state
The deterministic steady-state satisfies:

𝑓(𝑦, 𝑦, 𝑦, 0) = 0

Often, there is a closed-form solution.

Otherwise, one must resort to a numerical solver to solve

𝑦 → 𝑓(𝑦, 𝑦, 𝑦, 0)

Tip

In dynare the steady-state values are provided in the
steadystate_model; ... ; end; block. One can check
they are correct using the check; statement.
To find numerically the steady-state: steady;.

The implicit system

Replacing the solution

𝑦𝑡 = 𝑔(𝑦𝑡−1, 𝜖𝑡)

in the system
𝔼𝑡 [𝑓(𝑦𝑡+1, 𝑦𝑡, 𝑦𝑡−1, 𝜖𝑡)] = 0

we obtain:

𝔼𝑡 [𝑓(𝑔(𝑔(𝑦𝑡−1, 𝜖𝑡), 𝜖𝑡+1), 𝑔(𝑦𝑡−1, 𝜖𝑡), 𝑦𝑡−1, 𝜖𝑡)] = 0

It is an equation defining implicitly the function 𝑔()

The state-space

𝔼𝑡 [𝑓(𝑔(𝑔(𝑦𝑡−1, 𝜖𝑡), 𝜖𝑡+1), 𝑔(𝑦𝑡−1, 𝜖𝑡), 𝑦𝑡−1, 𝜖𝑡)] = 0

In this expression, 𝑦𝑡−1, 𝜖𝑡 is the state-space:
▶ it contains all information available at 𝑡 to predict the future

evolution of (𝑦𝑠)𝑠≥𝑡

Dropping the time subscripts, the equation must be satisfied for
any realization of (𝑦, 𝜖)

∀(𝑦, 𝜖) Φ(𝑔)(𝑦, 𝜖) = 𝔼𝜖′ [𝑓(𝑔(𝑔(𝑦, 𝜖), 𝜖′), 𝑔(𝑦, 𝜖), 𝑦, 𝜖)] = 0

It is a functional equation Φ(𝑔) = 0

The state-space

𝔼𝑡 [𝑓(𝑔(𝑔(𝑦𝑡−1, 𝜖𝑡), 𝜖𝑡+1), 𝑔(𝑦𝑡−1, 𝜖𝑡), 𝑦𝑡−1, 𝜖𝑡)] = 0

In this expression, 𝑦𝑡−1, 𝜖𝑡 is the state-space:
▶ it contains all information available at 𝑡 to predict the future

evolution of (𝑦𝑠)𝑠≥𝑡

Dropping the time subscripts, the equation must be satisfied for
any realization of (𝑦, 𝜖)

∀(𝑦, 𝜖) Φ(𝑔)(𝑦, 𝜖) = 𝔼𝜖′ [𝑓(𝑔(𝑔(𝑦, 𝜖), 𝜖′), 𝑔(𝑦, 𝜖), 𝑦, 𝜖)] = 0

It is a functional equation Φ(𝑔) = 0

Expected shocks
First order approximation:

▶ Assume |𝜖| << 1,|𝜖′| << 1
Perform a Taylor expansion with respect to future shock:

𝔼𝜖′ [𝑓(𝑔(𝑔(𝑦, 𝜖), 𝜖′), 𝑔(𝑦, 𝜖), 𝑦, 𝜖)] (1)
= 𝔼𝜖′ [𝑓(𝑔(𝑔(𝑦, 𝜖), 0), 𝑔(𝑦, 𝜖), 𝑦, 𝜖)] (2)

+𝔼𝜖′ [𝑓 ′
𝑦𝑡+1

(𝑔(𝑔(𝑦, 𝜖), 0), 𝑔(𝑦, 𝜖), 𝑦, 𝜖)𝑔′
𝜖𝜖′] + 𝑜(𝜖′) (3)

≈ 𝑓(𝑔(𝑔(𝑦, 𝜖), 0), 𝑔(𝑦, 𝜖), 𝑦, 𝜖) (4)

This uses the fact that 𝔼 [𝜖′] = 0.

At first order, expected shocks play no role.

To capture precautionary behaviour (like risk premia), we would
need to increase the approximation order.

Expected shocks
First order approximation:

▶ Assume |𝜖| << 1,|𝜖′| << 1
Perform a Taylor expansion with respect to future shock:

𝔼𝜖′ [𝑓(𝑔(𝑔(𝑦, 𝜖), 𝜖′), 𝑔(𝑦, 𝜖), 𝑦, 𝜖)] (1)
= 𝔼𝜖′ [𝑓(𝑔(𝑔(𝑦, 𝜖), 0), 𝑔(𝑦, 𝜖), 𝑦, 𝜖)] (2)

+𝔼𝜖′ [𝑓 ′
𝑦𝑡+1

(𝑔(𝑔(𝑦, 𝜖), 0), 𝑔(𝑦, 𝜖), 𝑦, 𝜖)𝑔′
𝜖𝜖′] + 𝑜(𝜖′) (3)

≈ 𝑓(𝑔(𝑔(𝑦, 𝜖), 0), 𝑔(𝑦, 𝜖), 𝑦, 𝜖) (4)

This uses the fact that 𝔼 [𝜖′] = 0.

At first order, expected shocks play no role.

To capture precautionary behaviour (like risk premia), we would
need to increase the approximation order.

First order perturbation
We are left with the system:

𝐹(𝑦, 𝜖) = 𝑓(𝑔(𝑔(𝑦, 𝜖), 0), 𝑔(𝑦, 𝜖), 𝑦, 𝜖) = 0

A variant of the implicit function theorem then yields the existence
of a first approximation of 𝑔:

𝑔(𝑦, 𝜖) = 𝑦 + 𝑔′
𝑦(𝑦 − 𝑦) + 𝑔′

𝑒𝜖𝑡

Unknown quantities 𝑔′
𝑦, and 𝑔′

𝑒 are obtained using the method of
undeterminate coefficients. Plug the first approximation into the
system and write the conditions

𝐹 ′
𝑦(𝑦, 0) = 0

𝐹 ′
𝜖 (𝑦, 0) = 0

First order perturbation
We are left with the system:

𝐹(𝑦, 𝜖) = 𝑓(𝑔(𝑔(𝑦, 𝜖), 0), 𝑔(𝑦, 𝜖), 𝑦, 𝜖) = 0

A variant of the implicit function theorem then yields the existence
of a first approximation of 𝑔:

𝑔(𝑦, 𝜖) = 𝑦 + 𝑔′
𝑦(𝑦 − 𝑦) + 𝑔′

𝑒𝜖𝑡

Unknown quantities 𝑔′
𝑦, and 𝑔′

𝑒 are obtained using the method of
undeterminate coefficients. Plug the first approximation into the
system and write the conditions

𝐹 ′
𝑦(𝑦, 0) = 0

𝐹 ′
𝜖 (𝑦, 0) = 0

Computing 𝑔′
𝑦

Recall the system:

𝐹(𝑦, 𝜖) = 𝑓(𝑔(𝑔(𝑦, 𝜖), 0), 𝑔(𝑦, 𝜖), 𝑦, 𝜖) = 0

We have

𝐹 ′
𝑦(𝑦, 0) = 𝑓 ′

𝑦𝑡+1
𝑔′

𝑦𝑔′
𝑦 + 𝑓 ′

𝑦𝑡
𝑔′

𝑦 + 𝑓 ′
𝑦𝑡−1

= 0

𝑔′
𝑦 is the solution of a specific Riccatti equation

𝐴𝑋2 + 𝐵𝑋 + 𝐶

where 𝐴, 𝐵, 𝐶 and 𝑋 = 𝑔′
𝑦 are square matrices ∈ ℝ𝑛 × ℝ𝑛

Computing 𝑔′
𝑦

Recall the system:

𝐹(𝑦, 𝜖) = 𝑓(𝑔(𝑔(𝑦, 𝜖), 0), 𝑔(𝑦, 𝜖), 𝑦, 𝜖) = 0

We have

𝐹 ′
𝑦(𝑦, 0) = 𝑓 ′

𝑦𝑡+1
𝑔′

𝑦𝑔′
𝑦 + 𝑓 ′

𝑦𝑡
𝑔′

𝑦 + 𝑓 ′
𝑦𝑡−1

= 0

𝑔′
𝑦 is the solution of a specific Riccatti equation

𝐴𝑋2 + 𝐵𝑋 + 𝐶

where 𝐴, 𝐵, 𝐶 and 𝑋 = 𝑔′
𝑦 are square matrices ∈ ℝ𝑛 × ℝ𝑛

First Order Deterministic Model

Let’s pause a minute to observe the first order deterministic model:

𝐴𝑋2 + 𝐵𝑋 + 𝐶

From our intuition in dimension 1, we know there must be multiple
solutions

▶ how do we find them?
▶ how do we select the right ones?

I the absence of shocks the dynamics of the model are given by

𝑦𝑡 = 𝑋𝑦𝑡−1

What is the condition for the model to be stationary?

-> the biggest eigenvalue of 𝑋 should be smaller than 1

First Order Deterministic Model

Let’s pause a minute to observe the first order deterministic model:

𝐴𝑋2 + 𝐵𝑋 + 𝐶

From our intuition in dimension 1, we know there must be multiple
solutions

▶ how do we find them?
▶ how do we select the right ones?

I the absence of shocks the dynamics of the model are given by

𝑦𝑡 = 𝑋𝑦𝑡−1

What is the condition for the model to be stationary?

-> the biggest eigenvalue of 𝑋 should be smaller than 1

Multiplicity of solution
It is possible to show that the system is associated with 2𝑛
generalized eigenvalues:

|𝜆1| ≤ ⋯ ≤ |𝜆2𝑛|

For each choice 𝐶 of 𝑛 eigenvalues (|𝐶| = 𝑛), a specific recursive
solution 𝑋𝐶 can be constructed. It has eigenvalues 𝐶.

This yields at least (2𝑛
𝑛) different combinations.

A model is well defined when there is exactly one solution that is
non divergent.

This is equivalent to:

|𝜆1| ≤ ⋯ ≤ |𝜆𝑛| ≤ 1 < |𝜆𝑛+1| ≤ ⋯ ≤ |𝜆2𝑛|

Multiplicity of solution
It is possible to show that the system is associated with 2𝑛
generalized eigenvalues:

|𝜆1| ≤ ⋯ ≤ |𝜆2𝑛|

For each choice 𝐶 of 𝑛 eigenvalues (|𝐶| = 𝑛), a specific recursive
solution 𝑋𝐶 can be constructed. It has eigenvalues 𝐶.

This yields at least (2𝑛
𝑛) different combinations.

A model is well defined when there is exactly one solution that is
non divergent.

This is equivalent to:

|𝜆1| ≤ ⋯ ≤ |𝜆𝑛| ≤ 1 < |𝜆𝑛+1| ≤ ⋯ ≤ |𝜆2𝑛|

Multiplicity of solution
It is possible to show that the system is associated with 2𝑛
generalized eigenvalues:

|𝜆1| ≤ ⋯ ≤ |𝜆2𝑛|

For each choice 𝐶 of 𝑛 eigenvalues (|𝐶| = 𝑛), a specific recursive
solution 𝑋𝐶 can be constructed. It has eigenvalues 𝐶.

This yields at least (2𝑛
𝑛) different combinations.

A model is well defined when there is exactly one solution that is
non divergent.

This is equivalent to:

|𝜆1| ≤ ⋯ ≤ |𝜆𝑛| ≤ 1 < |𝜆𝑛+1| ≤ ⋯ ≤ |𝜆2𝑛|

Example 1
Forward looking inflation:

𝜋𝑡 = 𝛼𝜋𝑡+1
with 𝛼 < 1.

Is it well defined?

We can rewrite the system as:

𝛼𝜋𝑡+1 − 𝜋𝑡 + 0𝜋𝑡−1 = 0

or

𝜋𝑡+1 − (1
𝛼 + 0) 𝜋𝑡 + (1

𝛼0) 𝜋𝑡−1 = 0

The generalized eigenvalues are 0 ≤ 1 < 1
𝛼 .

The unique stable solution is 𝜋𝑡 = 0𝜋𝑡−1

Example 1
Forward looking inflation:

𝜋𝑡 = 𝛼𝜋𝑡+1
with 𝛼 < 1.

Is it well defined?

We can rewrite the system as:

𝛼𝜋𝑡+1 − 𝜋𝑡 + 0𝜋𝑡−1 = 0

or

𝜋𝑡+1 − (1
𝛼 + 0) 𝜋𝑡 + (1

𝛼0) 𝜋𝑡−1 = 0

The generalized eigenvalues are 0 ≤ 1 < 1
𝛼 .

The unique stable solution is 𝜋𝑡 = 0𝜋𝑡−1

Example 1
Forward looking inflation:

𝜋𝑡 = 𝛼𝜋𝑡+1
with 𝛼 < 1.

Is it well defined?

We can rewrite the system as:

𝛼𝜋𝑡+1 − 𝜋𝑡 + 0𝜋𝑡−1 = 0

or

𝜋𝑡+1 − (1
𝛼 + 0) 𝜋𝑡 + (1

𝛼0) 𝜋𝑡−1 = 0

The generalized eigenvalues are 0 ≤ 1 < 1
𝛼 .

The unique stable solution is 𝜋𝑡 = 0𝜋𝑡−1

Example 1
Forward looking inflation:

𝜋𝑡 = 𝛼𝜋𝑡+1
with 𝛼 < 1.

Is it well defined?

We can rewrite the system as:

𝛼𝜋𝑡+1 − 𝜋𝑡 + 0𝜋𝑡−1 = 0

or

𝜋𝑡+1 − (1
𝛼 + 0) 𝜋𝑡 + (1

𝛼0) 𝜋𝑡−1 = 0

The generalized eigenvalues are 0 ≤ 1 < 1
𝛼 .

The unique stable solution is 𝜋𝑡 = 0𝜋𝑡−1

Example 2

Debt accumulation equation by a rational agent:

𝑏𝑡+1 − (1 + 1
𝛽)𝑏𝑡 + 1

𝛽 𝑏𝑡−1 = 0

Is it well-defined?

Two generalized eigenvalues 𝜆1 = 1 < 𝜆2 = 1
𝛽

The unique non-diverging solution is 𝑏𝑡 = 𝑏𝑡−1.
▶ it is a unit-root: any initial deviation in 𝑏𝑡−1 has persistent

effects

Example 2

Debt accumulation equation by a rational agent:

𝑏𝑡+1 − (1 + 1
𝛽)𝑏𝑡 + 1

𝛽 𝑏𝑡−1 = 0

Is it well-defined?

Two generalized eigenvalues 𝜆1 = 1 < 𝜆2 = 1
𝛽

The unique non-diverging solution is 𝑏𝑡 = 𝑏𝑡−1.
▶ it is a unit-root: any initial deviation in 𝑏𝑡−1 has persistent

effects

Example 2

Debt accumulation equation by a rational agent:

𝑏𝑡+1 − (1 + 1
𝛽)𝑏𝑡 + 1

𝛽 𝑏𝑡−1 = 0

Is it well-defined?

Two generalized eigenvalues 𝜆1 = 1 < 𝜆2 = 1
𝛽

The unique non-diverging solution is 𝑏𝑡 = 𝑏𝑡−1.
▶ it is a unit-root: any initial deviation in 𝑏𝑡−1 has persistent

effects

Example 3
Productivity process:

𝑧𝑡 = 𝜌𝑧𝑡−1
with 𝜌 < 1: well defined

In that case there is a hidden infinite eigenvalue ∞ associated to
𝑧𝑡+1.

To see why consider the system associated with eigenvalues 𝑚 and
𝜌:

𝑧𝑡+1 − (𝑚 + 𝜌)𝑧𝑡 + 𝑚𝜌𝑧𝑡−1 = 0

1
𝑚𝑧𝑡+1 − (1 + 𝜌

𝑚)𝑧𝑡 + 𝜌𝑧𝑡−1 = 0

Which corresponds to the initial model when 𝑚 = ∞
The generalized eigenvalues are 𝜆1 = 𝜌 ≤ 1 < 𝜆2 = ∞
More generally, any variable that does not appear in 𝑡 + 1 creates
one infinite generalized eigenvalue.

Example 3
Productivity process:

𝑧𝑡 = 𝜌𝑧𝑡−1
with 𝜌 < 1: well defined

In that case there is a hidden infinite eigenvalue ∞ associated to
𝑧𝑡+1.

To see why consider the system associated with eigenvalues 𝑚 and
𝜌:

𝑧𝑡+1 − (𝑚 + 𝜌)𝑧𝑡 + 𝑚𝜌𝑧𝑡−1 = 0

1
𝑚𝑧𝑡+1 − (1 + 𝜌

𝑚)𝑧𝑡 + 𝜌𝑧𝑡−1 = 0

Which corresponds to the initial model when 𝑚 = ∞
The generalized eigenvalues are 𝜆1 = 𝜌 ≤ 1 < 𝜆2 = ∞
More generally, any variable that does not appear in 𝑡 + 1 creates
one infinite generalized eigenvalue.

Example 3
Productivity process:

𝑧𝑡 = 𝜌𝑧𝑡−1
with 𝜌 < 1: well defined

In that case there is a hidden infinite eigenvalue ∞ associated to
𝑧𝑡+1.

To see why consider the system associated with eigenvalues 𝑚 and
𝜌:

𝑧𝑡+1 − (𝑚 + 𝜌)𝑧𝑡 + 𝑚𝜌𝑧𝑡−1 = 0

1
𝑚𝑧𝑡+1 − (1 + 𝜌

𝑚)𝑧𝑡 + 𝜌𝑧𝑡−1 = 0

Which corresponds to the initial model when 𝑚 = ∞

The generalized eigenvalues are 𝜆1 = 𝜌 ≤ 1 < 𝜆2 = ∞
More generally, any variable that does not appear in 𝑡 + 1 creates
one infinite generalized eigenvalue.

Example 3
Productivity process:

𝑧𝑡 = 𝜌𝑧𝑡−1
with 𝜌 < 1: well defined

In that case there is a hidden infinite eigenvalue ∞ associated to
𝑧𝑡+1.

To see why consider the system associated with eigenvalues 𝑚 and
𝜌:

𝑧𝑡+1 − (𝑚 + 𝜌)𝑧𝑡 + 𝑚𝜌𝑧𝑡−1 = 0

1
𝑚𝑧𝑡+1 − (1 + 𝜌

𝑚)𝑧𝑡 + 𝜌𝑧𝑡−1 = 0

Which corresponds to the initial model when 𝑚 = ∞
The generalized eigenvalues are 𝜆1 = 𝜌 ≤ 1 < 𝜆2 = ∞
More generally, any variable that does not appear in 𝑡 + 1 creates
one infinite generalized eigenvalue.

A criterium for well-definedness

Looking again at the list of eigenvalues we set aside the infinite
ones.

The model is well specified iff we can sort the eigenvalues as:

|𝜆1| ≤ ⋯ ≤ |𝜆𝑛| ≤ 1 < |𝜆𝑛+1| ≤ ⋯ |𝜆𝑛+𝑘| ≤ |𝜆𝑛+𝑘+1| ⋯ ≤ |𝜆2𝑛|⏟⏟⏟⏟⏟⏟⏟⏟⏟
infinite eigenvalues

Blanchard-Kahn criterium

The model satisfies the Blanchard-Kahn criterium if the num-
ber of eigenvalues greater than one, is exactly equal to the
number of variables appearing in 𝑡 + 1.
In that case the model is well-defined.

Computing the solution

There are several classical methods to compute the solution to the
algebraic Riccatti equation:

𝐴𝑋2 + 𝐵𝑋 + 𝐶 = 0

▶ qz decomposition
▶ traditionnally used in the DSGE literature since Chris Sims
▶ a little bit unintuitive

▶ cyclic reduction
▶ new default in dynare, more adequate for big models

▶ linear time iteration cf @sec:linear_time_iteration
▶ conceptually very simple

Computing 𝑔′
𝑒

Now we have 𝑔′
𝑦, how do we get 𝑔′

𝑒?

Recall:
𝐹(𝑦, 𝜖) = 𝑓(𝑔(𝑔(𝑦, 𝜖), 0), 𝑔(𝑦, 𝜖), 𝑦, 𝜖) = 0

We have
𝐹 ′

𝑒(𝑦, 0) = 𝑓 ′
𝑦𝑡+1

𝑔′
𝑦𝑔′

𝑒 + 𝑓 ′
𝑦𝑡

𝑔′
𝑒 + 𝑓 ′

𝜖𝑡
= 0

Now this is easy:

𝑔′
𝑒 = −(𝑓 ′

𝑦𝑡+1
𝑔′

𝑦 + 𝑓 ′
𝑦𝑡

)−1𝑓 ′
𝜖𝑡

= 0

The model solution
The result of the model solution:

𝑦𝑡 = 𝑔𝑦𝑦𝑡−1 + 𝑔𝑒𝜖𝑡

It is an AR1, driven by exogenous shock 𝜖𝑡.

Because it is a well known structure, one can investigate the model
with

▶ impulse response functions
▶ stochastic simulations

Then to compare the model to the data we compute
▶ implied moments:

▶ covariances, autocorrelation
▶ likelihood

Optimizing the fit to the data is called model estimation

The model solution
The result of the model solution:

𝑦𝑡 = 𝑔𝑦𝑦𝑡−1 + 𝑔𝑒𝜖𝑡

It is an AR1, driven by exogenous shock 𝜖𝑡.

Because it is a well known structure, one can investigate the model
with

▶ impulse response functions
▶ stochastic simulations

Then to compare the model to the data we compute
▶ implied moments:

▶ covariances, autocorrelation
▶ likelihood

Optimizing the fit to the data is called model estimation

The model solution
The result of the model solution:

𝑦𝑡 = 𝑔𝑦𝑦𝑡−1 + 𝑔𝑒𝜖𝑡

It is an AR1, driven by exogenous shock 𝜖𝑡.

Because it is a well known structure, one can investigate the model
with

▶ impulse response functions
▶ stochastic simulations

Then to compare the model to the data we compute
▶ implied moments:

▶ covariances, autocorrelation
▶ likelihood

Optimizing the fit to the data is called model estimation

Conclusion

What can you do with the solution

The solution of a model found by Dynare has an especially simple
form: an AR1

▶ 𝑦𝑡 = 𝑋𝑦𝑡−1 + 𝑌 𝜖𝑡
▶ where the covariances Σ of 𝜖𝑡 can be chosen by the modeler

With this solution we can (cf next TD)
▶ compute (conditional and unconditional) moments
▶ perform stochastic simulations, impulse response function

What can you do with the solution

The solution of a model found by Dynare has an especially simple
form: an AR1

▶ 𝑦𝑡 = 𝑋𝑦𝑡−1 + 𝑌 𝜖𝑡
▶ where the covariances Σ of 𝜖𝑡 can be chosen by the modeler

With this solution we can (cf next TD)
▶ compute (conditional and unconditional) moments
▶ perform stochastic simulations, impulse response function

What can you do with the solution

The solution of a model found by Dynare has an especially simple
form: an AR1

▶ 𝑦𝑡 = 𝑋𝑦𝑡−1 + 𝑌 𝜖𝑡
▶ where the covariances Σ of 𝜖𝑡 can be chosen by the modeler

With this solution we can (cf next TD)
▶ compute (conditional and unconditional) moments
▶ perform stochastic simulations, impulse response function

Going Further

Taking the model to the data with Dynare
▶ “estimate” the model: compute the likelihood of a solution

and maximize it by choosing the right parameters
▶ “identify” shocks in the data

Other functions
▶ higher order approximation
▶ (noninear) perfect foresight simulations
▶ ramsey plan
▶ discretionary policy
▶ …

Coming Next

Many models

Appendix: Linear Time Iteration

Linear Time Iteration

Recall the system to solve:

𝐹(𝑦, 𝜖) = 𝑓(𝑔(𝑔(𝑦, 𝜖), 0), 𝑔(𝑦, 𝜖), 𝑦, 𝜖) = 0

but now assume the decision rules today and tomorrow are
different:

▶ today: 𝑦𝑡 = 𝑔(𝑦𝑡−1, 𝜖𝑡) = 𝑦 + 𝑋𝑦𝑡−1 + 𝑔𝑦𝜖𝑡
▶ tomorrow: 𝑦𝑡+1 = ̃𝑔(𝑦𝑡, 𝜖𝑡+1) = 𝑦 + �̃�𝑦𝑡−1 + ̃𝑔𝑦𝜖𝑡

Then the Ricatti equation is written:

𝐴�̃�𝑋 + 𝐵𝑋 + 𝐶 = 0

Linear Time Iteration (2)

The linear time iteration algorithm consists in solving the decision
rule 𝑋 today as a function of decision rule tomorrow �̃�.

This corresponds to the simple formula:

𝑋 = −(𝐴�̃� + 𝐵)−1𝐶

And the full algorithm can be described as:
▶ choose 𝑋0
▶ for any 𝑋𝑛, compute 𝑋𝑛+1 = 𝑇 (𝑋𝑛) = −(𝐴𝑋𝑛 + 𝐵)−1𝐶

▶ repeat until convergence

Linear Time Iteration (3)

It can be shown that, starting from a random initial guess, the
linear time-iteration algorithm converges to the solution 𝑋 with
the smallest modulus:

|𝜆1| ≤ ⋯ ≤ |𝜆𝑛|⏟⏟⏟⏟⏟⏟⏟
Selected eigenvalues

≤ |𝜆𝑛+1| ⋯ ≤ |𝜆2𝑛|

In other words, it finds the right solution when the model is well
specified.

How do you check it is well specified?
▶ 𝜆𝑛 is the biggest eigenvalue of solution 𝑋
▶ what about 𝜆𝑛+1?

▶ 1
𝜆𝑛+1

is the biggest eigenvalue of (𝐴𝑋 + 𝐵)−1𝐴

Linear Time Iteration (4)

Define
𝑀(𝜆) = 𝐴𝜆2 + 𝐵𝜆 + 𝐶

For any solution 𝑋, 𝑀(𝜆) can be factorized as: 1

𝑀(𝜆) = (𝜆𝐴 + 𝐴𝑋 + 𝐵)(𝜆𝐼 − 𝑋)

and

𝑑𝑒𝑡(𝑀(𝜆)) = 𝑑𝑒𝑡(𝜆𝐴 + 𝐴𝑋 + 𝐵)⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑄(𝜆)

𝑑𝑒𝑡(𝜆𝐼 − 𝑋)

By construction 𝑄(𝜆) is a polynomial whose roots are those that
are not selected by the solution i.e. Λ ∖ 𝑆𝑝(𝑋).

1Special case of Bezout theorem. Easy to check in that case

Linear Time Iteration (5)
For 𝜆 ≠ 0 we have:

𝜆 ∈ 𝑆𝑝((𝐴𝑋 + 𝐵)−1𝐴)
⟺ 𝑑𝑒𝑡((𝐴𝑋 + 𝐵)−1)𝐴 − 𝐼𝜆) = 0

⟺ 𝑑𝑒𝑡(1
𝜆𝐴 − 𝐼(𝐴𝑋 + 𝐵)) = 0

⟺ 𝑄(1
𝜆) = 0

⟺ 1
𝜆 ∈ 𝐺 ∖ 𝑆𝑝(𝑋)

In words, (𝐴𝑋 + 𝐵)−1 contains all the eigenvalues that have been
rejected by the selection of 𝑋.

In particular, 𝜌((𝐴𝑋 + 𝐵)−1)𝐴) = 1/ min(𝐺 ∖ 𝑆𝑝(𝑋))

	Introduction
	Solving a model
	Conclusion
	Appendix: Linear Time Iteration

