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Introduction



What is the main specificity of economic modeling?
In (macro)economics, we model the behaviour of
economic agents by specifying:

▶ their objective

max
𝑐𝑡

𝐸𝑡 ∑
𝑠≥𝑡

𝛽𝑠𝑈(𝑐𝑠)

max 𝜋𝑡

⋯
▶ their constraints (budget constraint, econ.

environment…)

This has important implications:
▶ macro models are forward looking

▶ rely on expectations
▶ macro models need to be solved

In many cases, there is no closed form for the solution -> we need
numerical techniques
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Dynare

▶ 1996: Michel Juillard created an
opensource software to solve DSGE
models

▶ DSGE: Dynamic Stochastic
General Equilibrium

▶ usually solved around a
steady-state

▶ Now about 10 contributors.

▶ + power users who have
contributed to the code

▶ It has been widely adopted:
▶ early version in Gauss
▶ then Matlab/Octave/Scilab
▶ latest version in Julia
▶ … and Python (checkout dyno �)

Figure 1: Michel Juillard

https://www.mosphere.fr/ae2e6_models/voici/tree/index.html
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DSGE Models in institutions

Nowadays most DSGE models built in institutions have a Dynare
version (IMF/GIMF, EC/Quest, ECB/, NYFed/FRBNY)

▶ they are usually based on the midsize model from Smets &
Wouters (10 equations)

▶ but have grown up a lot (»100 equations)

Institutions, led by researchers are diversifying their model
▶ Semi-Structural Models
▶ Computational General Equilibrium Models
▶ Network Models
▶ Agent-based Models
▶ Heterogenous Agents Models
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The Plan

Provide a short introduction to DSGE modeling:
▶ How models are solved (today)
▶ Small Open Economy (aka IRBC model)
▶ Heterogeneity
▶ Financial Intermediation

In passing, we’ll discuss some of the trends



Solving a model



Model

A very concise representation of a model

𝔼𝑡 [𝑓(𝑦𝑡+1, 𝑦𝑡, 𝑦𝑡−1, 𝜖𝑡)] = 0

The problem:
▶ 𝑦𝑡 ∈ ℝ𝑛: the vector of

endogenous variables
▶ 𝜖𝑡 ∈ ℝ𝑛𝑒 : the vector of

exogenous variables
▶ we assume that 𝜖𝑡 is a

zero-mean gaussian
process

▶ 𝑓 ∶ ℝ𝑛 → ℝ𝑛: the model
equations

The solution:
▶ 𝑔 such that

∀𝑡, 𝑦𝑡 = 𝑔(𝑦𝑡−1, 𝜖𝑡)



The timing of the equations
Tip

In a dynare modefile the model equations are coded in the
model; ... ; end; block.
Variable 𝑣𝑡 (resp 𝑣𝑡−1, 𝑣𝑡+1) is denoted by v or v(0) (resp
v(-1), v(+1)).

General Timing Convention

New information arrives with the innovations 𝜖𝑡.

At date 𝑡, the information set is spanned by
ℱ𝑡 = ℱ(⋯ , 𝜖𝑡−3, 𝜖𝑡−2, 𝜖𝑡−1, 𝜖𝑡)
By convention an endogenous variable has a subscript 𝑡 if it is
known first at date 𝑡.

Several variable types depending on how they appear in the
model:

▶ jump variable: appear 𝑡 or 𝑡 + 1
▶ predetermined variable: appear in 𝑡 − 1 and 𝑡 (possibly 𝑡 + 1)
▶ static variables: appear in 𝑡 only

▶ can be expressed as a function of other variables
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The timing of equations

Example
Using Dynare’s timing conventions:

▶ Write the production function in the RBC
▶ Write the law of motion for capital 𝑘, with a depreciation rate

𝛿 and investment 𝑖
▶ when is capital known?
▶ when is investment known?

▶ Add a multiplicative investment efficiency shock 𝜒𝑡. Assume
it is an 𝐴𝑅1 driven by innovation 𝜂𝑡 and autocorrelation 𝜌𝜒

▶ how do you write the law of motion for capital?



Steady-state
The deterministic steady-state satisfies:

𝑓(𝑦, 𝑦, 𝑦, 0) = 0

Often, there is a closed-form solution.

Otherwise, one must resort to a numerical solver to solve

𝑦 → 𝑓(𝑦, 𝑦, 𝑦, 0)

Tip

In dynare the steady-state values are provided in the
steadystate_model; ... ; end; block. One can check
they are correct using the check; statement.
To find numerically the steady-state: steady;.



The implicit system

Replacing the solution

𝑦𝑡 = 𝑔(𝑦𝑡−1, 𝜖𝑡)

in the system
𝔼𝑡 [𝑓(𝑦𝑡+1, 𝑦𝑡, 𝑦𝑡−1, 𝜖𝑡)] = 0

we obtain:

𝔼𝑡 [𝑓(𝑔(𝑔(𝑦𝑡−1, 𝜖𝑡), 𝜖𝑡+1), 𝑔(𝑦𝑡−1, 𝜖𝑡), 𝑦𝑡−1, 𝜖𝑡)] = 0

It is an equation defining implicitly the function 𝑔()



The state-space

𝔼𝑡 [𝑓(𝑔(𝑔(𝑦𝑡−1, 𝜖𝑡), 𝜖𝑡+1), 𝑔(𝑦𝑡−1, 𝜖𝑡), 𝑦𝑡−1, 𝜖𝑡)] = 0

In this expression, 𝑦𝑡−1, 𝜖𝑡 is the state-space:
▶ it contains all information available at 𝑡 to predict the future

evolution of (𝑦𝑠)𝑠≥𝑡

Dropping the time subscripts, the equation must be satisfied for
any realization of (𝑦, 𝜖)

∀(𝑦, 𝜖) Φ(𝑔)(𝑦, 𝜖) = 𝔼𝜖′ [𝑓(𝑔(𝑔(𝑦, 𝜖), 𝜖′), 𝑔(𝑦, 𝜖), 𝑦, 𝜖)] = 0

It is a functional equation Φ(𝑔) = 0
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Expected shocks
First order approximation:

▶ Assume |𝜖| << 1,|𝜖′| << 1
Perform a Taylor expansion with respect to future shock:

𝔼𝜖′ [𝑓(𝑔(𝑔(𝑦, 𝜖), 𝜖′), 𝑔(𝑦, 𝜖), 𝑦, 𝜖)] (1)
= 𝔼𝜖′ [𝑓(𝑔(𝑔(𝑦, 𝜖), 0), 𝑔(𝑦, 𝜖), 𝑦, 𝜖)] (2)

+𝔼𝜖′ [𝑓 ′
𝑦𝑡+1

(𝑔(𝑔(𝑦, 𝜖), 0), 𝑔(𝑦, 𝜖), 𝑦, 𝜖)𝑔′
𝜖𝜖′] + 𝑜(𝜖′) (3)

≈ 𝑓(𝑔(𝑔(𝑦, 𝜖), 0), 𝑔(𝑦, 𝜖), 𝑦, 𝜖) (4)

This uses the fact that 𝔼 [𝜖′] = 0.

At first order, expected shocks play no role.

To capture precautionary behaviour (like risk premia), we would
need to increase the approximation order.
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First order perturbation
We are left with the system:

𝐹(𝑦, 𝜖) = 𝑓(𝑔(𝑔(𝑦, 𝜖), 0), 𝑔(𝑦, 𝜖), 𝑦, 𝜖) = 0

A variant of the implicit function theorem then yields the existence
of a first approximation of 𝑔:

𝑔(𝑦, 𝜖) = 𝑦 + 𝑔′
𝑦(𝑦 − 𝑦) + 𝑔′

𝑒𝜖𝑡

Unknown quantities 𝑔′
𝑦, and 𝑔′

𝑒 are obtained using the method of
undeterminate coefficients. Plug the first approximation into the
system and write the conditions

𝐹 ′
𝑦(𝑦, 0) = 0

𝐹 ′
𝜖 (𝑦, 0) = 0
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Computing 𝑔′
𝑦

Recall the system:

𝐹(𝑦, 𝜖) = 𝑓(𝑔(𝑔(𝑦, 𝜖), 0), 𝑔(𝑦, 𝜖), 𝑦, 𝜖) = 0

We have

𝐹 ′
𝑦(𝑦, 0) = 𝑓 ′

𝑦𝑡+1
𝑔′

𝑦𝑔′
𝑦 + 𝑓 ′

𝑦𝑡
𝑔′

𝑦 + 𝑓 ′
𝑦𝑡−1

= 0

𝑔′
𝑦 is the solution of a specific Riccatti equation

𝐴𝑋2 + 𝐵𝑋 + 𝐶

where 𝐴, 𝐵, 𝐶 and 𝑋 = 𝑔′
𝑦 are square matrices ∈ ℝ𝑛 × ℝ𝑛
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First Order Deterministic Model

Let’s pause a minute to observe the first order deterministic model:

𝐴𝑋2 + 𝐵𝑋 + 𝐶

From our intuition in dimension 1, we know there must be multiple
solutions

▶ how do we find them?
▶ how do we select the right ones?

I the absence of shocks the dynamics of the model are given by

𝑦𝑡 = 𝑋𝑦𝑡−1

What is the condition for the model to be stationary?

-> the biggest eigenvalue of 𝑋 should be smaller than 1
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Multiplicity of solution
It is possible to show that the system is associated with 2𝑛
generalized eigenvalues:

|𝜆1| ≤ ⋯ ≤ |𝜆2𝑛|

For each choice 𝐶 of 𝑛 eigenvalues (|𝐶| = 𝑛), a specific recursive
solution 𝑋𝐶 can be constructed. It has eigenvalues 𝐶.

This yields at least (2𝑛
𝑛 ) different combinations.

A model is well defined when there is exactly one solution that is
non divergent.

This is equivalent to:

|𝜆1| ≤ ⋯ ≤ |𝜆𝑛| ≤ 1 < |𝜆𝑛+1| ≤ ⋯ ≤ |𝜆2𝑛|
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Example 1
Forward looking inflation:

𝜋𝑡 = 𝛼𝜋𝑡+1
with 𝛼 < 1.

Is it well defined?

We can rewrite the system as:

𝛼𝜋𝑡+1 − 𝜋𝑡 + 0𝜋𝑡−1 = 0

or

𝜋𝑡+1 − ( 1
𝛼 + 0) 𝜋𝑡 + ( 1

𝛼0) 𝜋𝑡−1 = 0

The generalized eigenvalues are 0 ≤ 1 < 1
𝛼 .

The unique stable solution is 𝜋𝑡 = 0𝜋𝑡−1
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Example 2

Debt accumulation equation by a rational agent:

𝑏𝑡+1 − (1 + 1
𝛽 )𝑏𝑡 + 1

𝛽 𝑏𝑡−1 = 0

Is it well-defined?

Two generalized eigenvalues 𝜆1 = 1 < 𝜆2 = 1
𝛽

The unique non-diverging solution is 𝑏𝑡 = 𝑏𝑡−1.
▶ it is a unit-root: any initial deviation in 𝑏𝑡−1 has persistent

effects
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Example 3
Productivity process:

𝑧𝑡 = 𝜌𝑧𝑡−1
with 𝜌 < 1: well defined

In that case there is a hidden infinite eigenvalue ∞ associated to
𝑧𝑡+1.

To see why consider the system associated with eigenvalues 𝑚 and
𝜌:

𝑧𝑡+1 − (𝑚 + 𝜌)𝑧𝑡 + 𝑚𝜌𝑧𝑡−1 = 0

1
𝑚𝑧𝑡+1 − (1 + 𝜌

𝑚)𝑧𝑡 + 𝜌𝑧𝑡−1 = 0

Which corresponds to the initial model when 𝑚 = ∞
The generalized eigenvalues are 𝜆1 = 𝜌 ≤ 1 < 𝜆2 = ∞
More generally, any variable that does not appear in 𝑡 + 1 creates
one infinite generalized eigenvalue.
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A criterium for well-definedness

Looking again at the list of eigenvalues we set aside the infinite
ones.

The model is well specified iff we can sort the eigenvalues as:

|𝜆1| ≤ ⋯ ≤ |𝜆𝑛| ≤ 1 < |𝜆𝑛+1| ≤ ⋯ |𝜆𝑛+𝑘| ≤ |𝜆𝑛+𝑘+1| ⋯ ≤ |𝜆2𝑛|⏟⏟⏟⏟⏟⏟⏟⏟⏟
infinite eigenvalues

Blanchard-Kahn criterium

The model satisfies the Blanchard-Kahn criterium if the num-
ber of eigenvalues greater than one, is exactly equal to the
number of variables appearing in 𝑡 + 1.
In that case the model is well-defined.



Computing the solution

There are several classical methods to compute the solution to the
algebraic Riccatti equation:

𝐴𝑋2 + 𝐵𝑋 + 𝐶 = 0

▶ qz decomposition
▶ traditionnally used in the DSGE literature since Chris Sims
▶ a little bit unintuitive

▶ cyclic reduction
▶ new default in dynare, more adequate for big models

▶ linear time iteration cf @sec:linear_time_iteration
▶ conceptually very simple



Computing 𝑔′
𝑒

Now we have 𝑔′
𝑦, how do we get 𝑔′

𝑒?

Recall:
𝐹(𝑦, 𝜖) = 𝑓(𝑔(𝑔(𝑦, 𝜖), 0), 𝑔(𝑦, 𝜖), 𝑦, 𝜖) = 0

We have
𝐹 ′

𝑒(𝑦, 0) = 𝑓 ′
𝑦𝑡+1

𝑔′
𝑦𝑔′

𝑒 + 𝑓 ′
𝑦𝑡

𝑔′
𝑒 + 𝑓 ′

𝜖𝑡
= 0

Now this is easy:

𝑔′
𝑒 = −(𝑓 ′

𝑦𝑡+1
𝑔′

𝑦 + 𝑓 ′
𝑦𝑡

)−1𝑓 ′
𝜖𝑡

= 0



The model solution
The result of the model solution:

𝑦𝑡 = 𝑔𝑦𝑦𝑡−1 + 𝑔𝑒𝜖𝑡

It is an AR1, driven by exogenous shock 𝜖𝑡.

Because it is a well known structure, one can investigate the model
with

▶ impulse response functions
▶ stochastic simulations

Then to compare the model to the data we compute
▶ implied moments:

▶ covariances, autocorrelation
▶ likelihood

Optimizing the fit to the data is called model estimation
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Conclusion



What can you do with the solution

The solution of a model found by Dynare has an especially simple
form: an AR1

▶ 𝑦𝑡 = 𝑋𝑦𝑡−1 + 𝑌 𝜖𝑡
▶ where the covariances Σ of 𝜖𝑡 can be chosen by the modeler

With this solution we can (cf next TD)
▶ compute (conditional and unconditional) moments
▶ perform stochastic simulations, impulse response function
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Going Further

Taking the model to the data with Dynare
▶ “estimate” the model: compute the likelihood of a solution

and maximize it by choosing the right parameters
▶ “identify” shocks in the data

Other functions
▶ higher order approximation
▶ (noninear) perfect foresight simulations
▶ ramsey plan
▶ discretionary policy
▶ …



Coming Next

Many models



Appendix: Linear Time Iteration



Linear Time Iteration

Recall the system to solve:

𝐹(𝑦, 𝜖) = 𝑓(𝑔(𝑔(𝑦, 𝜖), 0), 𝑔(𝑦, 𝜖), 𝑦, 𝜖) = 0

but now assume the decision rules today and tomorrow are
different:

▶ today: 𝑦𝑡 = 𝑔(𝑦𝑡−1, 𝜖𝑡) = 𝑦 + 𝑋𝑦𝑡−1 + 𝑔𝑦𝜖𝑡
▶ tomorrow: 𝑦𝑡+1 = ̃𝑔(𝑦𝑡, 𝜖𝑡+1) = 𝑦 + �̃�𝑦𝑡−1 + ̃𝑔𝑦𝜖𝑡

Then the Ricatti equation is written:

𝐴�̃�𝑋 + 𝐵𝑋 + 𝐶 = 0



Linear Time Iteration (2)

The linear time iteration algorithm consists in solving the decision
rule 𝑋 today as a function of decision rule tomorrow �̃�.

This corresponds to the simple formula:

𝑋 = −(𝐴�̃� + 𝐵)−1𝐶

And the full algorithm can be described as:
▶ choose 𝑋0
▶ for any 𝑋𝑛, compute 𝑋𝑛+1 = 𝑇 (𝑋𝑛) = −(𝐴𝑋𝑛 + 𝐵)−1𝐶

▶ repeat until convergence



Linear Time Iteration (3)

It can be shown that, starting from a random initial guess, the
linear time-iteration algorithm converges to the solution 𝑋 with
the smallest modulus:

|𝜆1| ≤ ⋯ ≤ |𝜆𝑛|⏟⏟⏟⏟⏟⏟⏟
Selected eigenvalues

≤ |𝜆𝑛+1| ⋯ ≤ |𝜆2𝑛|

In other words, it finds the right solution when the model is well
specified.

How do you check it is well specified?
▶ 𝜆𝑛 is the biggest eigenvalue of solution 𝑋
▶ what about 𝜆𝑛+1?

▶ 1
𝜆𝑛+1

is the biggest eigenvalue of (𝐴𝑋 + 𝐵)−1𝐴



Linear Time Iteration (4)

Define
𝑀(𝜆) = 𝐴𝜆2 + 𝐵𝜆 + 𝐶

For any solution 𝑋, 𝑀(𝜆) can be factorized as: 1

𝑀(𝜆) = (𝜆𝐴 + 𝐴𝑋 + 𝐵)(𝜆𝐼 − 𝑋)

and

𝑑𝑒𝑡(𝑀(𝜆)) = 𝑑𝑒𝑡(𝜆𝐴 + 𝐴𝑋 + 𝐵)⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑄(𝜆)

𝑑𝑒𝑡(𝜆𝐼 − 𝑋)

By construction 𝑄(𝜆) is a polynomial whose roots are those that
are not selected by the solution i.e. Λ ∖ 𝑆𝑝(𝑋).

1Special case of Bezout theorem. Easy to check in that case



Linear Time Iteration (5)
For 𝜆 ≠ 0 we have:

𝜆 ∈ 𝑆𝑝((𝐴𝑋 + 𝐵)−1𝐴)
⟺ 𝑑𝑒𝑡((𝐴𝑋 + 𝐵)−1)𝐴 − 𝐼𝜆) = 0

⟺ 𝑑𝑒𝑡( 1
𝜆𝐴 − 𝐼(𝐴𝑋 + 𝐵)) = 0

⟺ 𝑄( 1
𝜆) = 0

⟺ 1
𝜆 ∈ 𝐺 ∖ 𝑆𝑝(𝑋)

In words, (𝐴𝑋 + 𝐵)−1 contains all the eigenvalues that have been
rejected by the selection of 𝑋.

In particular, 𝜌((𝐴𝑋 + 𝐵)−1)𝐴) = 1/ min(𝐺 ∖ 𝑆𝑝(𝑋))
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