
Back in Time. Fast. Improved Time Iterations.

Pablo Winant, Bank of England

June 29, 2017

1 Introduction

We present a fast iterative algorithm to find an ap-
proximate solution for a wide class of rational expec-
tations models characterized by first order conditions.
This method converges at quadratic rate and its prac-
tical implementation is several orders of magnitudes
faster than existing projection methods, while pro-
ducing the same solution. In particular its accuracy
is the same, only limited by the space of basis func-
tions used to interpolate the solution.

This paper is motivated by the recent interest in
the economic profession to investigate the robustness
of nonlinear medium scale rational equilibrium mod-
els, when the economy can be drawn away from the
steady-state or when there are important nonlineari-
ties jisuch as an occasionally binding constraint or a
zero lower bound (for instance [1], [2], [3]).

In general, these models do not derive from the
problem of one single optimizing agent, hence meth-
ods based on Bellman equations, like value iteration
or the faster policy iterations (see [4]) are inadequate.
Instead we intend to solve any model which can be
characterized by a set of transition and equilibrium
equations. The latter include Euler equations, asset
prices, or other nonlinear relations.1

1The formulation of the model is similar to [5]. Let st be
a vector of states and εt a vector of i.i.d. shocks. For any
admissible vector of controls xt the transition function g is:

st = g (st−1, xt−1, εt)

Equilibrium conditions are given by a function f such that:

Eεt+1 [f(st, xt, εt+1, st+1, xt+1)] = 0

which must be satisfied for any value of the states st variables.
This determines optimal policy xt = ϕ(st).

This generic class of model, can be solved by the
time iterations algorithm ([6], [7]), where a finite hori-
zon model is solved, and the number of periods in-
creased until convergence, or, in an equivalent formu-
lation, by going back in time from the last period.

The contractivity of this back in time operator is
a deep property of economic models. It ensures local
unicity and stability of rational expectations equilib-
ria. When the model admits a first order approxima-
tion around a steady-state, stability is locally implied
by the Blanchard-Kahn conditions ([8]).

We use this property to propose a new, faster, algo-
rithm. It reformulates the model as a big nonlinear
system of equations, in the decision variables. The
back-in-time stability is used to solve the Jacobian of
this system, by exploiting its particular structure.

Another, and perhaps more informative, descrip-
tion of the algorithm would be to describe it as a
way to speed up time-iterations by alternating be-
tween marginal improvements of the decision rules
and successive backward iterations (which compute
the cumulative errors of following a policy forever).
Essentially, our method relate to Euler iterations al-
gorithms in the same way than Howard improvement
steps relate to value function iteration.

Contrary to other recent solution methods, we do
not need additional assumptions such as the existence
of a fixed-point representation ([9], [10]), or the pre-
determination of endogenous states ([11]).

Our method does not replace and does not pre-
clude the use of dimensionality reduction algorithms
(see [12]). They come with a tradeoff between di-
mensionality and achievable precision. By increasing
computation speed and reducing memory footprint,
our algorithm improves the terms of this tradeoff.

1

2 A fast solution algorithm

2.1 Problem setup

Let s ∈ RN ×Rnd be a discretized state-space, where
each line contains a different vector of state.2 Sim-
ilarly, let x ∈ RN × Rnx be the corresponding list
of controls. The decision rule is then jointly charac-
terized by x and an interpolation method I(u,x) to
generalize the controls on any state u. Let (wj , εj)
be the nodes and the weights approximating an ex-
ogenous i.i.d. process.

Let x̃ denote the set of controls representing the
decision rule tomorrow. The model we try to solve is
defined by the optimization errors F (x, x̃) such that:

r = F (x, x̃)

=
∑
j

wjf (s,x, sj,xj) (1)

with

sj = g(s,x, εj)

xj = I(sj, s,x) (2)

A time-invariant solution x of the problem satisfies:

G (x) = F (x,x) = 0

2.2 Time iterations

Let’s define the time-iteration operator as the func-
tion T which computes x for any initial x̃. Close to
the solution, T is a (local) contraction of modulus
λ < 1. This motivates the time iteration algorithm:

1. Choose initial x0 and termination criterion ε > 0

2. For n > 0, given an initial guess xn,

• compute xn+1 = T (xn) by solving equation
F (x, x̃) in x.

• If ‖xn+1 − xn‖ < ε, return xn

Time iterations typically converge at a geometric
rate λ for which a lower bound can be estimated
as the limit ratio of successive approximation errors:

lim supn
‖xn+1−xn‖|
‖xn−xn−1‖ .

2For practical applications we consider both a cartesian grid
and smolyak product of chebychev nodes.

2.3 Newton-Raphson method

Another approach, also known as the bruteforce ap-
proach, consists in solving the system G(x) = 0 as
a big nonlinear system in x. A simple solution algo-
rithm can be summarized as follows:

1. Choose initial x0 and termination criterion η > 0

2. For n > 0, given an initial guess xn:

• Compute rn = G(xn)

• If ‖rn‖ < η return xn

• Compute dxn+1 = − (G′(xn))
−1
.rn

• Set xn+1 = xn + dxn+1

When the Newton descent converges it does so
at quadratic speed and takes in general less iter-
ations than the time-iteration algorithm.3

For any xn, we can differentiate (1) to get:

G′(xn).dx = F ′x(xn,xn).dx︸ ︷︷ ︸
An. dx

+F ′x̃(xn,xn).dx︸ ︷︷ ︸
−Bn. dx

(3)

In this expression, An and Bn are linear oper-
ators, whose expression we will explicit later.4

The Newton step can be obtained as:

dxn+1 = − (An −Bn)
−1

d rn (4)

To form jacobian matrix Jn representing An−Bn
and to invert it, is a very costly operation when
the number of gridpoints is high, even taking the
sparsity of the jacobian into account. Figure 1
illustrates why: An has a simple block-diagonal
structure, but Bn is more complicated. It might
even have too many non-zero elements to fit into
memory.

3In practice, a line search is made to find a scalar µ such
that ‖G(xn + µdxn+1)‖ is defined, optimal or improving.

4When M is a linear operator, we denote by M.v = M(v)
its application to vector v. Note that a linear operation on
matrices does not need to be a matrix product in the conven-
tional sense. For instance if M1, M2 are square matrices in
Rn×Rn the application L : Rn×Rn 3 X →M1XM2 is a lin-
ear operation since L.(X+λY) = L(X) +λL(Y). L is thus an
element of (Rn×Rn)× (Rn×Rn) and a matrix representation
would have a n2 × n2 size.

2

Figure 1: Structure of the jacobian for the two coun-
tries autarky model.
An − Bn is a 10800 × 10800 matrix (2% nonzero
elements). A sparse matrix algorithm solves for
(An − sBn)Y = X in 40 seconds, versus 263 milli-
seconds for the algorithm described in the text (20
minutes for the doubling algorithm).

2.4 Time Iterations Improved

The central idea investigated in this paper, con-
sists in replacing 4 by the Neumann series:

(
I +An

−1Bn +
(
A−1n Bn

)2
+ · · ·

)
An
−1rn (5)

When the sum in (5) converges absolutely, it nec-
essarily converges to the Newton-Raphson step
given in 4.

To evaluate the sum, one can set a tolerance
criterium η > 0 and then compute the terms
πk recursively defined by π0 = An

−1rn and
πk = A−1n Bn.πk−1 until ‖πk‖ < η.

An important remark at this stage is that one
never needs to form a matrix representation
of A−1n Bn to compute the successive terms πn.
Only requirement is an available precedure to
compute A−1n Bn.v for any vector v5

5If a (sparse) matrix representation Mn = A−1
n Bn is avail-

able, it is tempting to use a doubling algorithm to replace
infinite sum (5) by infinite product∑

i

(Mn)i = (I +Mn)
∏
i

(
I + (Mn)2i

)
where the computation of an additional on the right hand side
amounts to doubling the number of terms in the sum from

2.5 Spectral radius of the time it-
eration operator

The convergence of the infinite sum in (5) is
linked to the contractivity of time-iteration op-
erator T . Let’s consider the derivative, of the
time iteration step, evaluated at the solution x:

T ′ (x) .dx = −

F ′x(x,x).dx︸ ︷︷ ︸
A

−1F ′x̃(x,x)︸ ︷︷ ︸
B

dx

When the model is well specified, and the ap-
proximation method adequate, the norm of lin-
ear operator T ′ is λ < 1. As a result, if xn

is close enough to x, by continuity the norm of
operator A−1n Bn is smaller than 1 and the sum
converges.

As in the time-iteration case, the computation
of sum (5) also provides a natural lower bound

on the spectral norm λ as maxi
‖πi+1‖
‖πi‖ . One

can go further and compute the actual spec-
tral radius by starting from a random initial
vector ε0 and looking at the successive terms
εk =

(
A−1B

)
.εk−1. Then with probability one,

i.e. unless ε0 is very special, the ratio ‖εk‖
‖εk−1‖

converges to actual radius λ.

2.6 Blanchard-Kahn conditions

If the model admits a deterministic steady-state
s, x and Blanchard-Kahn conditions are met,
regular perturbation techniques provide a good
initial guess for the nonlinear solution.

As a byproduct they also produce several eigen-
values λ1 < · · · < λk < 1 < λk+1 < · · · < λ2n,
where (λi)i≤k are the eigenvalues ”selected” by

the left hand side. Each new factor, requires two additional
matrix multiplications. When the size of the matrices goes up,
these operations become increasingly costly w.r.t. the vector
multiplications involved in the infinite sum (5). We find that
this approach doesn’t provide any gain in our aplications.

3

the unique convergent solution. We show in ap-
pendix B that λk

λk+1
is an upper bound for the

norm of the time-iteration operator in the lin-
earized model. When significantly smaller than
one it implies a presumption that the model can
be solved nonlinearly in a neighborhood of the
steady-state.

2.7 Complementarity constraints

Suppose there are bounds a and b such that the
model to solve is:

F (x, x̃) ⊥ a ≤ x ≤ b

which, by convention, is equivalent to F (x, x̃) =
0 with

F (x, x̃) = min(max(F (x, x̃),x− a), b− x)

or to the smooth variant

F (x, x̃) = ϕ−(ϕ+(F (x, x̃),x− a), b− x)

where ϕ+ and ϕ− are the Fisher functions.

If the model with occasionnally binding con-
straints, has stable backward iterations, the logic

exposed before can be applied to F or F . In
particular, the values and derivatives of the re-
defined system have the same sparsity structure
as the original one.

3 Practical implementation

Differentiating (1), we get6:

d r =

A︷ ︸︸ ︷∑
j

wj

(
f ′x,εj+f ′s̃,εjg

′
x,εj+f ′x̃,εjI

′
s(sj, x̃)g′x,εj

)
.dx

+
∑
j

wjf
′
x̃,εjI

′
x̃(sj, x̃).dx̃︸ ︷︷ ︸

B.dx̃

(6)

6To shorten notations, for v = s,x, s̃, x̃ we abbreviate
g′v (s,x, εj) and f ′v

(
s,x, sj,xj

)
by g′v,εj and f ′v,εj respectively.

Let us denote by Dp,q ⊆ RN × Rp × RN × Rq
the space of four dimensional tensors such that,
for any M ∈ Dp,q we have i 6= j =⇒ Mn,i,m,j .
Elements of Dp,q are naturally represented by a
three dimensional tensor in RN ×Rp ×Rq or by
a block diagonal matrix of Rnp×nq where each
block has size p × q. All partial derivatives of g
and f appearing in (6) as well as I ′s are elements
of Dnx,d or Dnx,nx

.

Operations (addition, multiplication, inversion),
among elements of Dp,q can be implemented ef-
ficiently. In particular, operator A is an element
of Dnx,nx and can be easily inverted.

3.1 Precomputing A−1B

The computation of A−1B. dπ involves the com-
putation of

A−1
∑
j

wjf
′
x̃,εjIx(sj,x).dπ

To reduce the number of times the premultipli-
cation by A−1 is applied, we can precompute the
terms:

Dj = wjA
−1f ′x,εj

These terms don’t depend on dπ and need to be
computed only once for each Newton step. We
are then left with the evaluation of:

∑
j

DjIx(sj,x).dπ

3.2 Computing I ′x.dπ

If I() is an interpolator on a linear basis, it is
linear as a function of the data to be fitted, which
implies:

I ′x(sj,x).dπ = I(sj,dπ)

4

Jacobian size Time Iteration Fast Newton Fast Newton (GPU)

Model A (9x15x15 states) 108002 148s 9s 2s
Model A (9x50x50 states) 1200002 1440s 52s 7s

Model B (µ = 1) 3002 4.03s 0.61s -
Model B (µ = 2) 37562 113.40s 2.67s -
Model B (µ = 3) 317882 1181.41s 25.28s -
Model B (µ = 4) 2071802 15132.38s 612.61s -

Table 1: Timings.

Time Iteration Fast Newton

Total Model Prefilter Interpolation Total Model Prefilter Interpolation
Fraction 100% 66% 0.3% 7% 100% 46% 15% 22%

Calls 966 1632 6762 10 5560 7904

Table 2: Decomposition for model A.

The computation of I (sj,dπ) can be done us-
ing the same operations than the one used to
approximate the residuals tomorrow7.

4 Timings

The two models used to benchmark our algo-
rithm are described in appendix A. Model A
is a simple two countries economy taken from

7The linearity of I is apparent in the formula:

I
(
sj, dπ

)
= Φ(sj)B−1 dπ︸ ︷︷ ︸

dc

where B is the filtering matrix, and Φ() the function which
constructs the value of basis points. Whether it is wise to use
it or not depends on the approximation method:

• For smolyak polynomials, B is dense and there is not
other way than to invert it. Hence we precompute a
LU factorization in order to speed up the computation
of B−1 d r. Also the basis functions are non trivial to
compute, so that it pays to precompute the the basis
matrix Φ(sj) only once for each Newton step.

• For cubic splines, we use filtering formulas, to find
B−1 d r efficiently (see [13]). Also, precomputing the
number of basis functions doesn’t seem to offset the cost
of additional memory access. Instead we use the blend-
ing formulas to compute at once Φ(sj). d c from the co-
efficients c only.

[3], with 3 continuous states, interpolated us-
ing cubic splines. Model B is a mock 12 states
model made of 6 independent RBC countries.
The solution of the latter is approximated us-
ing a smolyak product of chebychev polynomials,
with parameters µ = 1, 2, 3, 4.

Using the method described above, we imple-
ment a simple safeguarded Newton optimiza-
tion8, with tolerance ε = 10−8. After mesuring
spectrum radius λ as described in section 2.5 we
set termination criterium η = (1− λ)ε for time-
iterations.

Table 1 shows very encouraging time gains: our
algorithm converges at least 15 times faster than
regular time iterations for model A and 6 times
faster for model B910.

Table 2 shows where the gains come from: the
number of model evaluations is drastically re-
duced (from 966 to 10) resulting in a bigger frac-

8At each step, we compute dxn and xn+1 = x + 2−k dxn

with k the smallest integer such that ‖G(xn+1)‖ is both, de-
fined and smaller than ‖G(xn)‖.

9CPU: Intel(R) Core(TM) i5-5300U CPU @ 2.30GHz with
16 GB memory. GPU: GTX Titan on the same machine.

10The comparison is probably unfair but Jesus Villaverde
and Oren Levintal solve a 12 states model using smolyak poly-
nomials in 55 (µ = 2) seconds and 7741.6 seconds (µ = 3).
Their Jacobian is slightly bigger than ours: 397352 elements.

5

tion of total time spent performing the prefilter-
ing and interpolation steps. Remaining opera-
tions are massively parallel and good candidates
for further optimizations11.

5 Conclusion

The life of a computational economist is plagued
by a very annoying problem: a realistic nonlinear
rational expectations model takes a long time to
solve. Theory is of no comfort as soon as one
is enstranged from the comfortable world of rep-
resentative agent and complete markets models.
There is often no proof of existence or global
uniqueness, let alone a formal proof that itera-
tive algorithms will converge for sure.

In this paper we try to alleviate this burden in
two different ways. We show how to reduce dra-
matically the time needed to solve such a model,
by reformulating it as one nonlinear system of
equations and by exploiting the contractivity of
backward iterations to solve the jacobian at each
step. This contractivity is a desirable feature
of any rational expectations model and when it
cannot be established theoretically, our method
suggest a way to test it numerically.

11For instance, our GPU code accelerates prefiltering 200
times, model evaluation 8 times, and interpolation 5 times.

6

References

[1] O. Levintal, “Solution Methods for Models with
Rare Disasters,” 2016.

[2] J. Fernández-Villaverde, G. Gordon,
P. Guerrón-Quintana, and J. F. Rubio-
Ramı́rez, “Nonlinear adventures at the zero
lower bound,” Journal of Economic Dynamics
and Control, vol. 57, pp. 182–204, 2015.

[3] N. Coeurdacier, H. Rey, and P. Winant, “Finan-
cial Integration and Growth in a Risky World,”
Working Paper 21817, National Bureau of Eco-
nomic Research, dec 2015.

[4] J. Rust, “Numerical dynamic programming in
economics,” Handbook of Computational Eco-
nomic, vol. 1, no. November, pp. 614–722, 1996.

[5] M. J. Miranda and P. L. Fackler, Applied Com-
putational Economics and Finance. Cambridge,
MA, USA: MIT Press, 2002.

[6] A. Deaton and G. Laroque, “On the Behaviour
of Commodity Prices,” The Review of Eco-
nomic Studies, vol. 59, no. 1, p. 1, 1992.

[7] W. J. Coleman, “Solving the Stochastic Growth
Model by Policy-Function Iteration,” Journal of
Business & Economic Statistics, vol. 8, no. 1,
pp. 27–29, 1990.

[8] S. Cho and A. Moreno, “The forward method
as a solution refinement in rational expectations
models,” Journal of Economic Dynamics and
Control, vol. 35, no. 3, pp. 257–272, 2011.

[9] W. J. den Haan and A. Marcet, “Solving the
Stochastic Growth Model by Parameterizing
Expectations,” Journal of Business & Eco-
nomic Statistics, vol. 8, no. 1, pp. 31–34, 1990.

[10] C. D. Carroll, “The method of endogenous grid-
points for solving dynamic stochastic optimiza-
tion problems.” 2006.

[11] K. L. Judd, L. Maliar, and S. Maliar, “How
to Solve Dynamic Stochastic Compputing Ex-
pectations Just Once,” NBER Working Paper,
2011.

[12] L. Maliar and S. Maliar, Numerical methods
for large scale dynamic economic models, vol. 3.
2014.

[13] D. Ruijters and P. Thvenaz, “Gpu prefilter
for accurate cubic b-spline interpolation,” The
Computer Journal, vol. 55, no. 1, p. 15, 2010.

A Models

B Relation with perturba-
tion theory

There is a connection between the stability of
backward iterations and the behaviour of the
model in the neigborhood of its steady-state. In
particular, we can show that a model satisfying
the Blanchard-Kahn conditiosn locally, will also
be stable via Backward iterations. We can also
use a perturbation solution to compute an esti-
mate for the modulus of the time-iteration oper-
ator. This are important informations, when one
intends to apply global solution methods (as de-
scribed in section 2) to solve medium size DSGE
models.

For the sake of clarity, assume that there are not
shocks. Close to the steady-state (s, x), one can
use the perturbation theory to approximate the
decision rule today (ϕ) and tomorrow (ϕ̃) as

ϕ(x) = x+X1(s− s) + o(s− s)

ϕ̃(x) = x+ X̃1(s− s) + o(s− s)

B.1 Stability of backward induc-
tions

At first order, the decisions must satisfy the Ri-
catti equation:

K1 +K2X +K3X̃ (K4 +K5X)

Back in time iterations, consist in computing the
successive terms Xn+1 = T (Xn):

Xn+1 = (K2 +K3XnK5)−1(K1 +K3XnK4)

This recursion does not converge in general from
any initial point. If it converges to a solution
X, we can study the stability of this solution by
differentiating B.1 to get:

7

(K2 +K3XK5) dXn+1︸ ︷︷ ︸
AdXn+1

+K3 dXn(

P︷ ︸︸ ︷
K4 +K5X)︸ ︷︷ ︸

−BdXn

Based on these simple calculations, we can enu-
merate several conditions, which can be met se-
lectively by a given solution:

(a) Dynamic stability: all eigenvalues of P are
smaller than one.12

(b) Backward iterations are (locally) well de-
fined: matrix A is invertible.

(c) Backward iterations are stable: operator
u → A−1B.u has all eigenvalues smaller
than one.

All this conditions can be tested easily for a given
solution of the linear problem. In particular, the
spectral radius of A−1B.u provides an indication
for the contractivity of the global time-iteration
algorithm.

B.2 Blanchard-Kahn conditions
and MOD solution

A time invariant solution to (B.1) satisfies the
algebraic Ricatti equation if:

K1 +K2X +K3X (K4 +K5X)

All the solutions to this equation can be charac-
terized by choosing k eigenvalues among

(λ1 ≤ · · · ≤ λ2n)

where (λi)1≤i≤2n are the eigenvalues to an as-
sociated matrix pencil. Let’s denote by ΛP =
(λi1 , · · · , λik) one choice of k eigenvalues, and
denote by ΛQ = (λj1 , λj2n−k

) the remaing ones.
Each choice of eigenvalues ΛP = (λi1 , · · · , λik)

12Given the decision rule X the law of motion of the states
is st − s = (gs + gxX) (st−1 − s) + o (st−1 − s)

corresponds to a different control X. The the-
ory says that ΛP are the eigenvalues of the tran-
sition matrix P while ΛQ contains the inverse of
the eigenvalues in A−1K3.

As a result the modulus of operator T ′ satisfies:

|||T ′||| ≤ |||A−1K3||| × |||P ||| = (min
i
λi)(min

j
λj)

In general, the inequality is not an equality and
there can be several solutions satisfying (2-3) or
even (1-2-3).

However, when the Blanchard-Kahn conditions
are met (λk < 1 < λk+1), it is easy to check that
the MOD-solution (which selects λ1, · · · , λk) al-
ways meets the conditions (1-2-3) and is the
unique one to do so.

If λk < λk+1 < 1, the MOD solution still satisfies
(1-2-3), but there are exactly k other solutions
satisfying (1-2) (by taking λk+1 instead of λl for
µ = [1, k]).

These other solutions can be stable by time-
iteration (3), or not. If λk > 1, the MOD solu-
tion is still well defined by time-iteration (2-3),
but it is not stable. There can be other solutions
which share the same property.

8

